Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer

被引:65
作者
Bleker, Jeroen [1 ,2 ,3 ]
Kwee, Thomas C. [1 ,2 ,3 ]
Dierckx, Rudi A. J. O. [1 ,2 ,3 ]
de Jong, Igle Jan [4 ]
Huisman, Henkjan [5 ]
Yakar, Derya [1 ,2 ,3 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Radiol, Med Imaging Ctr, Hanzepl 1, NL-9700 RB Groningen, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med, Med Imaging Ctr, Hanzepl 1, NL-9700 RB Groningen, Netherlands
[3] Univ Groningen, Univ Med Ctr Groningen, Dept Mol Imaging, Med Imaging Ctr, Hanzepl 1, NL-9700 RB Groningen, Netherlands
[4] Univ Groningen, Univ Med Ctr Groningen, Dept Urol, Hanzepl 1, NL-9700 RB Groningen, Netherlands
[5] Radboud Univ Nijmegen, Med Ctr, Dept Radiol & Nucl Med, Geert Grootepl Zuid 10, NL-6525 GA Nijmegen, Netherlands
关键词
Machine learning; Magnetic resonance imaging; Prostatic neoplasms; Neoplasm grading; DIAGNOSTIC-ACCURACY; TRANSITION; FEATURES; PERFORMANCE; BIOPSY; SYSTEM;
D O I
10.1007/s00330-019-06488-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To create a radiomics approach based on multiparametric magnetic resonance imaging (mpMRI) features extracted from an auto-fixed volume of interest (VOI) that quantifies the phenotype of clinically significant (CS) peripheral zone (PZ) prostate cancer (PCa). Methods This study included 206 patients with 262 prospectively called mpMRI prostate imaging reporting and data system 3-5 PZ lesions. Gleason scores > 6 were defined as CS PCa. Features were extracted with an auto-fixed 12-mm spherical VOI placed around a pin point in each lesion. The value of dynamic contrast-enhanced imaging(DCE), multivariate feature selection and extreme gradient boosting (XGB) vs. univariate feature selection and random forest (RF), expert-based feature pre-selection, and the addition of image filters was investigated using the training (171 lesions) and test (91 lesions) datasets. Results The best model with features from T2-weighted (T2-w) + diffusion-weighted imaging (DWI) + DCE had an area under the curve (AUC) of 0.870 (95% CI 0.980-0.754). Removal of DCE features decreased AUC to 0.816 (95% CI 0.920-0.710), although not significantly (p = 0.119). Multivariate and XGB outperformed univariate and RF (p = 0.028). Expert-based feature pre-selection and image filters had no significant contribution. Conclusions The phenotype of CS PZ PCa lesions can be quantified using a radiomics approach based on features extracted from T2-w + DWI using an auto-fixed VOI. Although DCE features improve diagnostic performance, this is not statistically significant. Multivariate feature selection and XGB should be preferred over univariate feature selection and RF. The developed model may be a valuable addition to traditional visual assessment in diagnosing CS PZ PCa.
引用
收藏
页码:1313 / 1324
页数:12
相关论文
共 53 条
[1]   Highly efficient carrier multiplication in PbS nanosheets [J].
Aerts, Michiel ;
Bielewicz, Thomas ;
Klinke, Christian ;
Grozema, Ferdinand C. ;
Houtepen, Arjan J. ;
Schins, Juleon M. ;
Siebbeles, Laurens D. A. .
NATURE COMMUNICATIONS, 2014, 5
[2]   Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study [J].
Ahmed, Hashim U. ;
Bosaily, Ahmed El-Shater ;
Brown, Louise C. ;
Gabe, Rhian ;
Kaplan, Richard ;
Parmar, Mahesh K. ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard G. ;
Freeman, Alex ;
Kirkham, Alex P. ;
Oldroyd, Robert ;
Parker, Chris ;
Emberton, Mark .
LANCET, 2017, 389 (10071) :815-822
[3]  
Ahonen T, 2004, LECT NOTES COMPUT SC, V3021, P469
[4]  
[Anonymous], SCI REP UK
[5]   PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images [J].
Armato, Samuel G., II ;
Huisman, Henkjan ;
Drukker, Karen ;
Hadjiiski, Lubomir ;
Kirby, Justin S. ;
Petrick, Nicholas ;
Redmond, George ;
Giger, Maryellen L. ;
Cha, Kenny ;
Mamonov, Artem ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan .
JOURNAL OF MEDICAL IMAGING, 2018, 5 (04)
[6]   Fast High Dimensional Vector Multiplication Face Recognition [J].
Barkan, Oren ;
Weill, Jonathan ;
Wolf, Lior ;
Aronowitz, Hagai .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :1960-1967
[7]   Detection of Clinically Significant Prostate Cancer: Short Dual-Pulse Sequence versus Standard Multiparametric MR Imaging-A Multireader Study [J].
Barth, Borna K. ;
De Visschere, Pieter J. L. ;
Cornelius, Alexander ;
Nicolau, Carlos ;
Vargas, Hebert Alberto ;
Eberli, Daniel ;
Donati, Olivio F. .
RADIOLOGY, 2017, 284 (03) :725-736
[8]   Wavelet-based de-noising techniques in MRI [J].
Bartusek, Karel ;
Prinosil, Jiri ;
Smekal, Zdenek .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) :480-488
[9]   Feature selection using Joint Mutual Information Maximisation [J].
Bennasar, Mohamed ;
Hicks, Yulia ;
Setchi, Rossitza .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (22) :8520-8532
[10]   Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values [J].
Bonekamp, David ;
Kohl, Simon ;
Wiesenfarth, Manuel ;
Schelb, Patrick ;
Radtke, Jan Philipp ;
Goetz, Michael ;
Kickingereder, Philipp ;
Yaqubi, Kaneschka ;
Hitthaler, Bertram ;
Gaehlert, Nils ;
Kuder, Tristan Anselm ;
Deister, Fenja ;
Freitag, Martin ;
Hohenfellner, Markus ;
Hadaschik, Boris A. ;
Schlemmer, Heinz-Peter ;
Maier-Hein, Klaus H. .
RADIOLOGY, 2018, 289 (01) :128-137