Deep learning-based downscaling of tropospheric nitrogen dioxide using ground-level and satellite observations

被引:21
作者
Yu, Manzhu [1 ]
Liu, Qian [2 ]
机构
[1] Penn State Univ, Dept Geog, Inst Computat & Data Sci, University Pk, PA 16802 USA
[2] Georgia State Univ, Dept Geog & GeoInformat Sci, NSF Spatiotemporal Innovat Ctr, Atlanta, GA 30303 USA
关键词
Nitrogen dioxide; Spatial downscaling; Spatial interpolation; Deep learning; TROPOMI; AirNOW; AIR-QUALITY; NOX EMISSIONS; CLIMATE; INTERPOLATION;
D O I
10.1016/j.scitotenv.2021.145145
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Air quality is one of the major issues within an urban area that affect people's living environment and health conditions. Existing observations are not adequate to provide a spatiotemporally comprehensive air quality information for vulnerable populations to plan ahead. Launched in 2017, TROPOspheric Monitoring Instrument (TROPOMI) provides a high spatial resolution (similar to 5 km) tropospheric air quality measurement that captures the spatial variability of air pollution, but still limited by its daily overpass in the temporal dimension and relatively short historical records. Integrating with the hourly available AirNOWobservations by ground-level discrete stations, we proposed and compared two deep learning methods that learn the relationship between the ground-level nitrogen dioxide (NO2) observation from AirNOW and the tropospheric NO2 column density from TROPOMI to downscale the daily NO2 to an hourly resolution. The input predictors include the locations of AirNOW stations, AirNOW NO2 observations, boundary layer height, other meteorological status, elevation, major roads, and power plants. The learned relationship can be used to produce NO2 emission estimates at the sub-urban scale on an hourly basis. The two methods include 1) an integrated method between inverse weighted distance and a feed forward neural network (IDW+ DNN), and 2) a deep matrix network (DMN) that maps the discrete AirNOWobservations directly to the distribution of TROPOMI observations. Wefurther compared the accuracies of both models using different configurations of input predictors and validated their average Root Mean Squared Error (RMSE), average Mean Absolute Error (MAE) and the spatial distribution of errors. Results show that DMN generates more reliable NO2 estimates and captures a better spatial distribution of NO2 concentrations than the IDW+ DNN model. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 35 条
[1]   Spatiotemporal interpolation of air pollutants in the Greater Cairo and the Delta, Egypt [J].
Ahmed, Sara Osama ;
Mazloum, Reda ;
Abou-Ali, Hala .
ENVIRONMENTAL RESEARCH, 2018, 160 :27-34
[2]  
American Lung Association, 2020, STAT AIR REP
[3]  
Baklanov A, 2002, URBAN AIR QUALITY - RECENT ADVANCES, PROCEEDINGS, P43
[4]   Atmospheric conservation properties in ERA-Interim [J].
Berrisford, P. ;
Kallberg, P. ;
Kobayashi, S. ;
Dee, D. ;
Uppala, S. ;
Simmons, A. J. ;
Poli, P. ;
Sato, H. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (659) :1381-1399
[5]   A comparison of statistical and machine learning methods for creating national daily maps of ambient PM2.5 concentration [J].
Berrocal, Veronica J. ;
Guan, Yawen ;
Muyskens, Amanda ;
Wang, Haoyu ;
Reich, Brian J. ;
Mulholland, James A. ;
Chang, Howard H. .
ATMOSPHERIC ENVIRONMENT, 2020, 222
[6]   Intercomparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over Western Europe [J].
Blond, N. ;
Boersma, K. F. ;
Eskes, H. J. ;
van der A, R. J. ;
Van Roozendael, M. ;
De Smedt, I. ;
Bergametti, G. ;
Vautard, R. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D10)
[7]   An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument [J].
Boersma, K. F. ;
Eskes, H. J. ;
Dirksen, R. J. ;
van der A, R. J. ;
Veefkind, J. P. ;
Stammes, P. ;
Huijnen, V. ;
Kleipool, Q. L. ;
Sneep, M. ;
Claas, J. ;
Leitao, J. ;
Richter, A. ;
Zhou, Y. ;
Brunner, D. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (09) :1905-1928
[8]   Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States [J].
Di, Qian ;
Kloog, Itai ;
Koutrakis, Petros ;
Lyapustin, Alexei ;
Wang, Yujie ;
Schwartz, Joel .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (09) :4712-4721
[9]   Linking NO2 surface concentration and integrated content in the urban developed atmospheric boundary layer [J].
Dieudonne, E. ;
Ravetta, F. ;
Pelon, J. ;
Goutail, F. ;
Pommereau, J-P .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (06) :1247-1251
[10]   A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005-2014) [J].
Duncan, Bryan N. ;
Lamsal, Lok N. ;
Thompson, Anne M. ;
Yoshida, Yasuko ;
Lu, Zifeng ;
Streets, David G. ;
Hurwitz, Margaret M. ;
Pickering, Kenneth E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (02) :976-996