Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative

被引:196
作者
Wei, Zhongli [1 ]
Li, Qingdong [2 ]
Che, Junling [1 ]
机构
[1] Shandong Jianzhu Univ, Dept Math, Jinan 250101, Shandong, Peoples R China
[2] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Shandong, Peoples R China
关键词
Initial value problem; Fractional differential equation; Riemann-Liouville sequential fractional derivatives; Upper solution and lower solution; MONOTONE ITERATIVE TECHNIQUE; BOUNDARY-VALUE-PROBLEMS; INTEGRAL-EQUATIONS; EXISTENCE; UNIQUENESS; 1ST-ORDER; ORDER;
D O I
10.1016/j.jmaa.2010.01.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we shall discuss the properties of the well-known Mittag-Leffler function, and consider the existence and uniqueness of solution of the initial value problem for fractional differential equation involving Riemann-Liouville sequential fractional derivative by using monotone iterative method. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:260 / 272
页数:13
相关论文
共 28 条
[1]   On the concept of solution for fractional differential equations with uncertainty [J].
Agarwal, Ravi P. ;
Lakshmikantham, V. ;
Nieto, Juan J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2859-2862
[2]   Existence results and monotone iterative technique for impulsive hybrid functional differential systems with anticipation and retardation [J].
Ahmad, Bashir ;
Sivasundaram, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (02) :515-524
[3]   Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions [J].
Ahmad, Bashir ;
Nieto, Juan J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (09) :1838-1843
[4]  
ALBASSAM MA, 1965, J REINE ANGEW MATH, V218, P70
[5]  
[Anonymous], 2006, THEORY APPL FRACTION
[6]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[7]   Fractional order differential equations on an unbounded domain [J].
Arara, A. ;
Benchohra, M. ;
Hamidi, N. ;
Nieto, J. J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :580-586
[8]   Existence of Periodic Solution for a Nonlinear Fractional Differential Equation [J].
Belmekki, Mohammed ;
Nieto, Juan J. ;
Rodriguez-Lopez, Rosana .
BOUNDARY VALUE PROBLEMS, 2009,
[9]   Fractional differential equations as alternative models to nonlinear differential equations [J].
Bonilla, B. ;
Rivero, M. ;
Rodriguez-Germa, L. ;
Trujillo, J. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) :79-88
[10]   Nonsmooth analysis and fractional differential equations [J].
Devi, J. Vasundhara ;
Lakshmikantham, V. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (12) :4151-4157