On a graph associated to invariant conjugacy classes of finite groups

被引:5
作者
Beltrán, A [1 ]
机构
[1] Univ Jaume 1, Dept Matemat, Castellon 12071, Spain
关键词
Normal Subgroup; Finite Group; Conjugacy Class; Frobenius Group; Finite Simple Group;
D O I
10.1007/BF02773065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and G be finite groups of coprime orders such that A acts by automorphisms on G. We define the A-invariant conjugacy class graph of G to be the graph having as vertices the noncentral A-invariant conjugacy classes of G, and two vertices are connected by an edge if their cardinalities are not coprime. We prove that when the graph is disconnected then G is solvable.
引用
收藏
页码:147 / 155
页数:9
相关论文
共 7 条
[1]   ON GRAPHS RELATED TO CONJUGACY CLASSES OF GROUPS [J].
ALFANDARY, G .
ISRAEL JOURNAL OF MATHEMATICS, 1994, 86 (1-3) :211-220
[2]   Actions with nilpotent fixed point subgroup [J].
Beltran, A .
ARCHIV DER MATHEMATIK, 1997, 69 (03) :177-184
[3]   ON A GRAPH RELATED TO CONJUGACY CLASSES OF GROUPS [J].
BERTRAM, EA ;
HERZOG, M ;
MANN, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 :569-575
[4]   ON THE DIAMETER OF A GRAPH RELATED TO CONJUGACY CLASSES OF GROUPS [J].
CHILLAG, D ;
HERZOG, M ;
MANN, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1993, 25 :255-262
[5]  
Huppert B., 1998, Character Theory of Finite Groups
[6]   PERMUTATION GROUP SUBDEGREES AND THE COMMON DIVISOR GRAPH [J].
ISAACS, IM ;
PRAEGER, CE .
JOURNAL OF ALGEBRA, 1993, 159 (01) :158-175
[7]  
KAZARIN SL, 1981, IZVESTIYA VYSSHIKH U, P40