Simulation of Osmotic Pressure in Concentrated Aqueous Salt Solutions

被引:266
作者
Luo, Yun [1 ]
Roux, Benoit [1 ]
机构
[1] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2010年 / 1卷 / 01期
基金
美国国家卫生研究院;
关键词
MOLECULAR-DYNAMICS SIMULATION; KIRKWOOD-BUFF THEORY; FORCE-FIELD; FREE-ENERGY; GUANIDINIUM CHLORIDE; REVERSE-OSMOSIS; SODIUM-CHLORIDE; WATER; POTENTIALS; MODEL;
D O I
10.1021/jz900079w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurate force fields are critical for meaningful simulation studies, of highly concentrated electrolytes. The ion models that are widely used in biomolecular simulation's do not necessarily reproduce the correct behavior, at finite concentrations. In principle, the osmotic pressure is a key thermodynamic property that could be used to test and refine force field parameters for concentrated solutions. Here we describe a novel, simple, and practical method to compute the osmotic pressure directly from molecular dynamics (MD) simulation of concentrated' aqueous solutions by introducing an idealized semipermeable membrane. Simple models for Na+, K+, and Cl- are tested and calibrated to accurately reproduce the experimental osmotic pressure at high salt concentration, up to the solubility limit of 4-5 M. The methodology is general and can be extended to any type of solute as well as nonadditive polarizable force fields.
引用
收藏
页码:183 / 189
页数:7
相关论文
共 50 条
  • [31] Vapour liquid equilibria of carbon dioxide in dilute and concentrated aqueous solutions of piperazine at low to high pressure
    Dash, Sukanta Kumar
    Samanta, Arunkumar
    Samanta, Amar Nath
    Bandyopadhyay, Syamalendu S.
    FLUID PHASE EQUILIBRIA, 2011, 300 (1-2) : 145 - 154
  • [32] Modeling of pH of concentrated aqueous solutions of sodium metaborate
    Shabunya, S., I
    Minkina, V. G.
    Martynenko, V. V.
    Kalinin, V., I
    RUSSIAN CHEMICAL BULLETIN, 2019, 68 (06) : 1183 - 1189
  • [33] Osmotic dehydration of apples in sugar/salt solutions: Concentration profiles and effective diffusion coefficients
    Monnerat, S. M.
    Pizzi, T. R. M.
    Mauro, M. A.
    Menegalli, F. C.
    JOURNAL OF FOOD ENGINEERING, 2010, 100 (04) : 604 - 612
  • [34] Molecular dynamics simulations of concentrated aqueous electrolyte solutions
    Calero, Carles
    Faraudo, Jordi
    Aguilella-Arzo, Marcel
    MOLECULAR SIMULATION, 2011, 37 (02) : 123 - 134
  • [35] Molecular dynamics study of ion clustering in concentrated electrolyte solutions for the estimation of salt solubilities
    Schaefer, Dominik
    Kohns, Maximilian
    FLUID PHASE EQUILIBRIA, 2023, 571
  • [36] Quantitative characterization of weak self-association in concentrated solutions of immunoglobulin G via the measurement of sedimentation equilibrium and osmotic pressure
    Jimenez, Mercedes
    Rivas, German
    Minton, Allen P.
    BIOCHEMISTRY, 2007, 46 (28) : 8373 - 8378
  • [37] Surface Viscoelasticity of Concentrated Salt Solutions: Specific Ion Effects
    Safouane, Mahassine
    Langevin, Dominique
    CHEMPHYSCHEM, 2009, 10 (01) : 222 - 225
  • [38] Activity Coefficients of Concentrated Salt Solutions: A Monte Carlo Investigation
    Abbas, Zareen
    Ahlberg, Elisabet
    JOURNAL OF SOLUTION CHEMISTRY, 2019, 48 (8-9) : 1222 - 1243
  • [39] Diffusion in Binary Aqueous Solutions of Alcohols by Molecular Simulation
    Klinov, Alexander
    Anashkin, Ivan
    PROCESSES, 2019, 7 (12)
  • [40] Salt concentration and recovery from aqueous solutions using pressure-driven membrane processes
    Karelin, FN
    Askerniya, AA
    Gril, ML
    Parilova, OF
    DESALINATION, 1996, 104 (1-2) : 69 - 74