Alumina supported nano-platinum on copper nanoparticles prepared via galvanic displacement reaction for preferential carbon monoxide oxidation in presence of hydrogen

被引:10
作者
Khobragade, Rohini [1 ,2 ]
Yearwar, Divya [1 ]
Labhsetwar, Nitin [1 ,2 ]
Saravanan, Govindachetty [1 ,2 ]
机构
[1] CSIR NEERI, Energy & Resource Management Div, Nehru Marg, Nagpur 440020, Maharashtra, India
[2] CSIR NEERI, Acad Sci & Innovat Res AcSIR, Nehru Marg, Nagpur 440020, Maharashtra, India
关键词
Nano-platinum; Galvanic reaction; Carbon monoxide; Hydrogen; Oxidation; CATALYTIC CO OXIDATION; SOOT OXIDATION; PROX REACTION; CU; PERFORMANCE; STABILITY; CERIA; AU; ELECTROCATALYSTS; SEGREGATION;
D O I
10.1016/j.ijhydene.2019.09.091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Improved catalytic centres with a minimum mass-loading of expensive platinum (Pt) have been anticipated for various catalytic applications, for instance preferential oxidation (PROX) of carbon monoxide (CO) in the presence of Hydrogen. Here, we report the synthesis of nano-Pt on the surface of copper (Cu) nanoparticles (NPs) supported on gamma-Al2O3 (Pt-n(Cu)/gamma-Al2O3) via galvanic displacement reaction (GDR) for the catalytic CO-PROX reaction. Pt n (Cu)/gamma-Al2O3 showed much improved CO-PROX performance compared to that of the assynthesized Pt-n(Cu)/gamma-Al2O3 catalyst. Importantly, no significant conversion of hydrogen at a lower temperature range (<200 degrees C) is observed during the CO-PROX reaction which is one of the essential prerequisites for the CO-PROX reaction. Moreover, Pt n (Cu)/gamma-Al(2)O(3 )showed the durable, long-term catalytic CO-PROX performance for 120 h. These results infer that realization of nano-Pt on the surface of the Cu NPs holds the promise as the catalytic centres with the minimum mass-loading of Pt for the CO-PROX reaction. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:28757 / 28768
页数:12
相关论文
共 62 条
[11]   A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation [J].
Cheng, Xuan ;
Shi, Zheng ;
Glass, Nancy ;
Zhang, Lu ;
Zhang, Jiujun ;
Song, Datong ;
Liu, Zhong-Sheng ;
Wang, Haijiang ;
Shen, Jun .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :739-756
[12]   Anode materials for low-temperature fuel cells: A density functional theory study [J].
Christoffersen, E ;
Liu, P ;
Ruban, A ;
Skriver, HL ;
Norskov, JK .
JOURNAL OF CATALYSIS, 2001, 199 (01) :123-131
[13]  
Cui CH, 2013, NAT MATER, V12, P765, DOI [10.1038/NMAT3668, 10.1038/nmat3668]
[14]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[15]   Strong metal-support interaction promoted via constructing biocarbon membrane for enhanced CO preferential oxidation activity of Rh/CaCO3@biocarbon [J].
Ding, Junfang ;
Li, Liping ;
Wang, Ye ;
Xu, Xianzhe ;
Chen, Shaoqing ;
Wang, Xiyang ;
Li, Huixia ;
Zhao, Shuaiqiang ;
Li, Guangshe .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (41) :23034-23045
[16]   Segregation and stability at Pt3Ni(111) surfaces and Pt75Ni25 nanoparticles [J].
Fowler, Ben ;
Lucas, Christopher A. ;
Omer, Ahmed ;
Wang, Guofeng ;
Stamenkovic, Vojislav R. ;
Markovic, Nenad M. .
ELECTROCHIMICA ACTA, 2008, 53 (21) :6076-6080
[17]   Element-specific anisotropic growth of shaped platinum alloy nanocrystals [J].
Gan, Lin ;
Cui, Chunhua ;
Heggen, Marc ;
Dionigi, Fabio ;
Rudi, Stefan ;
Strasser, Peter .
SCIENCE, 2014, 346 (6216) :1502-1506
[18]   Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles [J].
Gao, Feng ;
Goodman, D. Wayne .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (24) :8009-8020
[19]   Co/ZrO2 catalysts coated on cordierite monoliths for CO preferential oxidation [J].
Gomez, Leticia E. ;
Tiscornia, Ines S. ;
Boix, Alicia V. ;
Miro, Eduardo E. .
APPLIED CATALYSIS A-GENERAL, 2011, 401 (1-2) :124-133
[20]  
Greeley J, 2009, NAT CHEM, V1, P552, DOI [10.1038/NCHEM.367, 10.1038/nchem.367]