A 40-Marker Panel for High Dimensional Characterization of Cancer Immune Microenvironments by Imaging Mass Cytometry

被引:97
作者
Ijsselsteijn, Marieke E. [1 ]
van der Breggen, Ruud [1 ]
Sarasqueta, Arantza Farina [1 ]
Koning, Frits [1 ,2 ]
de Miranda, Noel F. C. C. [1 ]
机构
[1] Leiden Univ, Med Ctr, Dept Pathol, Leiden, Netherlands
[2] Leiden Univ, Med Ctr, Dept Immunohematol & Blood Transfus, Leiden, Netherlands
来源
FRONTIERS IN IMMUNOLOGY | 2019年 / 10卷
关键词
imaging mass cytometry; cancer microenvironment; immunophenotyping; CyTOF; cancer immunity; immunotherapy; CELLS; DENSITY;
D O I
10.3389/fimmu.2019.02534
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Multiplex immunophenotyping technologies are indispensable for a deeper understanding of biological systems. Until recently, high-dimensional cellular analyses implied the loss of tissue context as they were mostly performed in single-cell suspensions. The advent of imaging mass cytometry introduced the possibility to simultaneously detect a multitude of cellular markers in tissue sections. This technique can be applied to various tissue sources including snap-frozen and formalin-fixed, paraffin-embedded (FFPE) tissues. However, a number of methodological challenges must be overcome when developing large antibody panels in order to preserve signal intensity and specificity of antigen detection. We report the development of a 40-marker panel for imaging mass cytometry on FFPE tissues with a particular focus on the study of cancer immune microenvironments. It comprises a variety of immune cell markers including lineage and activation markers as well as surrogates of cancer cell states and tissue-specific markers (e.g., stroma, epithelium, vessels) for cellular contextualization within the tissue. Importantly, we developed an optimized workflow for maximum antibody performance by separating antibodies into two distinct incubation steps, at different temperatures and incubation times, shown to significantly improve immunodetection. Furthermore, we provide insight into the antibody validation process and discuss why some antibodies and/or cellular markers are not compatible with the technique. This work is aimed at supporting the implementation of imaging mass cytometry in other laboratories by describing methodological procedures in detail. Furthermore, the panel described here is an excellent immune monitoring tool that can be readily applied in the context of cancer research.
引用
收藏
页数:8
相关论文
共 19 条
[1]   Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry [J].
Bandura, Dmitry R. ;
Baranov, Vladimir I. ;
Ornatsky, Olga I. ;
Antonov, Alexei ;
Kinach, Robert ;
Lou, Xudong ;
Pavlov, Serguei ;
Vorobiev, Sergey ;
Dick, John E. ;
Tanner, Scott D. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :6813-6822
[2]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696
[3]   Single-cell mass cytometry for analysis of immune system functional states [J].
Bjornson, Zach B. ;
Nolan, Garry P. ;
Fantl, Wendy J. .
CURRENT OPINION IN IMMUNOLOGY, 2013, 25 (04) :484-494
[4]   Advancing cancer immunotherapy: a vision for the field [J].
de Miranda, Noel F. C. C. ;
Trajanoski, Zlatko .
GENOME MEDICINE, 2019, 11 (1)
[5]   Type, density, and location of immune cells within human colorectal tumors predict clinical outcome [J].
Galon, Jerom ;
Costes, Anne ;
Sanchez-Cabo, Fatima ;
Kirilovsky, Amos ;
Mlecnik, Bernhard ;
Lagorce-Pages, Christine ;
Tosolini, Marie ;
Camus, Matthieu ;
Berger, Anne ;
Wind, Philippe ;
Zinzindohoue, Franck ;
Bruneval, Patrick ;
Cugnenc, Paul-Henri ;
Trajanoski, Zlatko ;
Fridman, Wolf-Herman ;
Pages, Franck .
SCIENCE, 2006, 313 (5795) :1960-1964
[6]  
Giesen C, 2014, NAT METHODS, V11, P417, DOI [10.1038/NMETH.2869, 10.1038/nmeth.2869]
[7]   Localization and Density of Immune Cells in the Invasive Margin of Human Colorectal Cancer Liver Metastases Are Prognostic for Response to Chemotherapy [J].
Halama, Niels ;
Michel, Sara ;
Kloor, Matthias ;
Zoernig, Inka ;
Benner, Axel ;
Spille, Anna ;
Pommerencke, Thora ;
Doeberitz, Magnus von Knebel ;
Folprecht, Gunnar ;
Luber, Birgit ;
Feyen, Nadine ;
Martens, Uwe M. ;
Beckhove, Philipp ;
Gnjatic, Sacha ;
Schirmacher, Peter ;
Herpel, Esther ;
Weitz, Juergen ;
Grabe, Niels ;
Jaeger, Dirk .
CANCER RESEARCH, 2011, 71 (17) :5670-5677
[8]   The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy [J].
Havel, Jonathan J. ;
Chowell, Diego ;
Chan, Timothy A. .
NATURE REVIEWS CANCER, 2019, 19 (03) :133-150
[9]   Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis [J].
Levine, Jacob H. ;
Simonds, Erin F. ;
Bendall, Sean C. ;
Davis, Kara L. ;
Amir, El-ad D. ;
Tadmor, Michelle D. ;
Litvin, Oren ;
Fienberg, Harris G. ;
Jager, Astraea ;
Zunder, Eli R. ;
Finck, Rachel ;
Gedman, Amanda L. ;
Radtke, Ina ;
Downing, James R. ;
Pe'er, Dana ;
Nolan, Garry P. .
CELL, 2015, 162 (01) :184-197
[10]   Cancer immunophenotyping by seven-colour multispectral imaging without tyramide signal amplification [J].
Lisselstelin, Marieke E. ;
Brouwer, Thomas P. ;
Abdulrahman, Ziena ;
Reidy, Eileen ;
Ramalheiro, Ana ;
Heeren, A. Marijne ;
Vahrmeljer, Alexander ;
Jordanova, Ekaterina S. ;
de Miranda, Noel F. C. C. .
JOURNAL OF PATHOLOGY CLINICAL RESEARCH, 2019, 5 (01) :3-11