Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices

被引:95
作者
Gala, Sadek [1 ]
Ragusa, Maria Alessandra [2 ]
机构
[1] Univ Mostaganem, Dept Math, Box 227, Mostaganem 27000, Algeria
[2] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria, I-695125 Catania, Italy
关键词
35Q35; 76D03; Boussinesq equations; regularity criterion; NAVIER-STOKES EQUATIONS; BLOW-UP CRITERION; WEAK SOLUTION; SYSTEM;
D O I
10.1080/00036811.2015.1061122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to establish a logarithmically improved the regularity criterion in terms of the homogeneous Besov space [GRAPHICS] to the Boussinesq equations. We prove the solution [GRAPHICS] is smooth up to time [GRAPHICS] provided that [GRAPHICS] for some [GRAPHICS] and [GRAPHICS] .
引用
收藏
页码:1271 / 1279
页数:9
相关论文
共 35 条
[1]  
[Anonymous], 2003, INTRO PDES WAVES ATM
[2]  
[Anonymous], 2003, USP MAT NAUK
[3]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[4]  
Cannon J., 1980, Lecture Notes in Math., V771, P129
[5]   Local existence and blow-up criterion for the Boussinesq equations [J].
Chae, D ;
Nam, HS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :935-946
[6]  
Chan CH, 2007, METHODS APPL ANAL, V14, P197
[7]   On the Regularity Criterion of Weak Solution for the 3D Viscous Magneto-Hydrodynamics Equations [J].
Chen, Qionglei ;
Miao, Changxing ;
Zhang, Zhifei .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 284 (03) :919-930
[8]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[9]  
[董柏青 Dong Boqing], 2010, [中国科学:数学, Scientia Sinica Mathematica], V40, P1225
[10]  
Fan J, 2001, J MATH FLUID MECH, V13, P557