Improving Performance of Convolutional Neural Networks via Feature Embedding

被引:1
作者
Ghoshal, Torumoy [1 ]
Zhang, Silu [1 ]
Dang, Xin [1 ]
Wilkins, Dawn [1 ]
Chen, Yixin [1 ]
机构
[1] Univ Mississippi, Oxford, MS 38655 USA
来源
PROCEEDINGS OF THE 2019 ANNUAL ACM SOUTHEAST CONFERENCE (ACMSE 2019) | 2019年
关键词
Feature Embedding; Feature Locality; Convolutional Neural Networks; Classification; t-SNE;
D O I
10.1145/3299815.3314429
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently convolutional neural networks (CNN) have shown exceptional performance with data where a feature structure is explicitly defined, for example image data. Real world data is often represented as d dimensional vectors and they lack such feature structure. If features could be embedded into a low dimensional space to introduce feature locality, CNNs could take advantage of the newly introduced feature structure and show better performance. In this paper, we present a technique of feature embedding to introduce feature locality so that non-image data exhibit image like feature structure. We achieve this by embedding features into a 1d or 2d space using t-SNE. We show that CNN performs better under the proposed approach.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 10 条
[1]   Geometric Deep Learning Going beyond Euclidean data [J].
Bronstein, Michael M. ;
Bruna, Joan ;
LeCun, Yann ;
Szlam, Arthur ;
Vandergheynst, Pierre .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) :18-42
[2]  
Ciresan D, 2012, PROC CVPR IEEE, P3642, DOI 10.1109/CVPR.2012.6248110
[3]  
Kim Yoon, 2014, C EMP METH NAT LANG, P1746, DOI [DOI 10.3115/V1/D14-1181, 10.3115/v1/D14-1181]
[4]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[5]   Backpropagation Applied to Handwritten Zip Code Recognition [J].
LeCun, Y. ;
Boser, B. ;
Denker, J. S. ;
Henderson, D. ;
Howard, R. E. ;
Hubbard, W. ;
Jackel, L. D. .
NEURAL COMPUTATION, 1989, 1 (04) :541-551
[6]  
LeCun Y, 1998, MNIST handwritten digit database
[7]  
Mikolov T., 2013, ADV NEURAL INFORM PR, V26, P3111
[8]  
Pennington J., 2014, P 2014 C EMP METH NA, P1532
[9]   Deep learning [J].
Rusk, Nicole .
NATURE METHODS, 2016, 13 (01) :35-35
[10]  
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579