Physicochemical properties of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend membranes for lithium ion battery applications: Influence of poly(ethylene oxide) molecular weight

被引:33
作者
Correia, Daniela M. [1 ,2 ]
Costa, Carlos M. [2 ]
Nunes-Pereira, Joao [2 ]
Silva, Maria M. [1 ]
Botelho, Gabriela [1 ]
Gomez Ribelles, Jose Luis [3 ,4 ]
Lanceros-Mendez, Senenxtu [2 ]
机构
[1] Univ Minho, Ctr Dept Quim, P-4710057 Braga, Portugal
[2] Univ Minho, Ctr Dept Fis, P-4710057 Braga, Portugal
[3] Univ Politecn Valencia, Ctr Biomat & Ingn Tisular, Valencia 46022, Spain
[4] CIBER Bioingn Biomat & Nanomed, Valencia, Spain
关键词
Polymer blend; Molecular weight; Battery separator; Thermal degradation; Electrochemical techniques; POLYMER ELECTROLYTES; THERMAL-DEGRADATION; SEPARATORS; FLUORIDE); CONDUCTIVITY; COPOLYMER; LIQUID; FLUORIDE-TRIFLUORETHYLENE); TEMPERATURE; PERFORMANCE;
D O I
10.1016/j.ssi.2014.09.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer blends based on poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide), P(VDF-TrFE)/PEO, with different PEO contents and molecular weights have been prepared for use as Li-ion battery separator membranes. The electrolyte uptake strongly depends on PEO content within the polymer blend. Thermal, mechanical and electrical properties of the membranes are dependent both on PEO content and molecular weight. A thermal degradation mechanism is also proposed as PEO content has a large influence on the activation energy and thermal degradation of P(VDF-TrFE). After electrolyte uptake, all polymer blends exhibit high ionic conductivity at room temperature, the highest value being 0.7 mS cm(-1) which was obtained for the 40/60 membrane with PEO with M-w = 10 kDa. From the point of view of lithium-ion battery application, polymer blends with 10 kDa molecular weight PEO are more adequate due to its excellent mechanical properties and high ionic conductivity. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 67
页数:14
相关论文
共 77 条
[1]   POLYMER ELECTROLYTES REINFORCED BY CELGARD(R) MEMBRANES [J].
ABRAHAM, KM ;
ALAMGIR, M ;
HOFFMAN, DK .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (03) :683-687
[2]   ENTHALPY AND ENTROPY OF FUSION AND EQUILIBRIUM MELTING-POINT OF POLYETHYLENE OXIDE [J].
AFIFIEFFAT, AM ;
HAY, JN .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1972, 68 (04) :656-+
[3]   Investigation of swelling phenomena in PEO-based polymer electrolytes - II. Chemical and electrochemical characterization [J].
Appetecchi, GB ;
Aihara, Y ;
Scrosati, B .
SOLID STATE IONICS, 2004, 170 (1-2) :63-72
[4]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[5]   THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS [J].
AURBACH, D ;
DAROUX, M ;
FAGUY, P ;
YEAGER, E .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 297 (01) :225-244
[6]  
Balbuena P.B., 2004, Lithium-Ion Batteries: Solid-Electrolyte Interphase
[7]   Studies of solid-state electrochromic devices based on PEO/siliceous hybrids doped with lithium perchlorate [J].
Barbosa, P. C. ;
Silva, M. M. ;
Smith, M. J. ;
Goncalves, A. ;
Fortunato, E. .
ELECTROCHIMICA ACTA, 2007, 52 (08) :2938-2943
[8]  
Bard L.R.F. A. J., 2001, ELECTROCHEMICAL METH
[9]   Thermooxidative studies of poly(ether-esters) 1.: Copolymer of poly(butylene terephthalate) and poly(ethylene oxide) [J].
Botelho, G ;
Queirós, A ;
Gijsman, P .
POLYMER DEGRADATION AND STABILITY, 2000, 67 (01) :13-20
[10]   Effects of molecular weight on poly(ω-pentadecalactone) mechanical and thermal properties [J].
Cai, Jiali ;
Liu, Chen ;
Cai, Minmin ;
Zhu, Jie ;
Zuo, Feng ;
Hsiao, Benjamin S. ;
Gross, Richard A. .
POLYMER, 2010, 51 (05) :1088-1099