Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis

被引:12
|
作者
Karapanagiotis, Christos [1 ]
Wosniok, Aleksander [1 ]
Hicke, Konstantin [1 ]
Krebber, Katerina [1 ]
机构
[1] Bundesanstalt Mat Forsch & Prufung, Unter Eichen 87, D-12205 Berlin, Germany
关键词
distributed Brillouin sensing; convolutional neural networks; Brillouin optical frequency domain analysis; distributed fiber-optic sensors; temperature and strain sensing; SIMULTANEOUS TEMPERATURE; BOTDA; RANGE;
D O I
10.3390/s21082724
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To our knowledge, this is the first report on a machine-learning-assisted Brillouin optical frequency domain analysis (BOFDA) for time-efficient temperature measurements. We propose a convolutional neural network (CNN)-based signal post-processing method that, compared to the conventional Lorentzian curve fitting approach, facilitates temperature extraction. Due to its robustness against noise, it can enhance the performance of the system. The CNN-assisted BOFDA is expected to shorten the measurement time by more than nine times and open the way for applications, where faster monitoring is essential.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A time-efficient convolutional neural network model in human activity recognition
    Marjan Gholamrezaii
    SMT AlModarresi
    Multimedia Tools and Applications, 2021, 80 : 19361 - 19376
  • [2] Convolutional Neural Network-Assisted Optical Orbital Angular Momentum Recognition and Communication
    Wang, Peipei
    Liu, Junmin
    Sheng, Lijuan
    He, Yanliang
    Xiong, Wenjie
    Huang, Zebin
    Zhou, Xinxing
    Li, Ying
    Chen, Shuqing
    Zhang, Xiaomin
    Fan, Dianyuan
    IEEE ACCESS, 2019, 7 : 162025 - 162035
  • [3] A time-efficient convolutional neural network model in human activity recognition
    Gholamrezaii, Marjan
    AlModarresi, S. M. T.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (13) : 19361 - 19376
  • [4] Wavelet convolutional neural network for robust and fast temperature measurements in Brillouin optical time domain reflectometry
    Chen, Bei
    Su, Lianghao
    Zhang, Zhaoyang
    Liu, Xiaozhi
    Dai, Tingge
    Song, Muping
    Yu, Hui
    Wang, Yuehai
    Yang, Jianyi
    OPTICS EXPRESS, 2022, 30 (09) : 13942 - 13958
  • [5] Neural network-assisted signal processing in Brillouin optical correlation-domain sensing for potential high-speed implementation
    Yao, Yuguo
    Mizuno, Yosuke
    OPTICS EXPRESS, 2021, 29 (22) : 35474 - 35489
  • [6] Time-Efficient Fire Detection Convolutional Neural Network Coupled with Transfer Learning
    Mahmoud, Hanan A. Hosni
    Alharbi, Amal H.
    Alghamdi, Norah S.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (03): : 1393 - 1403
  • [7] Convolutional Neural Network-Assisted Least-Squares Migration
    Wu, Boming
    Hu, Hao
    Zhou, Hua-Wei
    SURVEYS IN GEOPHYSICS, 2023, 44 (04) : 1107 - 1124
  • [8] Convolutional Neural Network-Assisted Least-Squares Migration
    Boming Wu
    Hao Hu
    Hua-Wei Zhou
    Surveys in Geophysics, 2023, 44 : 1107 - 1124
  • [9] Characterization of Brillouin Frequency Shift in Brillouin Optical Time Domain Analysis (BOTDA)
    Lalam, N.
    Ng, W. P.
    Dai, X.
    Al-Musawi, H. K.
    2015 20TH EUROPEAN CONFERENCE ON NETWORKS AND OPTICAL COMMUNICATIONS (NOC), 2015,
  • [10] Convolutional neural network-assisted design and validation of terahertz metamaterial sensor
    Chen, Shunrong
    Zhao, Chunyue
    Wang, Wei
    Yang, Songyuan
    Zhou, Chengjiang
    MATERIALS & DESIGN, 2025, 253