Image features for machine learning based web image classification

被引:0
|
作者
Cho, SS [1 ]
Hwang, CJ [1 ]
机构
[1] ETRI, Comp Software Lab, Taejon 305360, South Korea
来源
INTERNET IMAGING IV | 2003年 / 5018卷
关键词
image classification; machine learning; analysis of web documents; Bayes classifier; decision tree;
D O I
10.1117/12.479719
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The ubiquity of the Internet has brought about an increasing amount of multi-formatted Web documents. Although image occupies a large part of importance on these increasing Web documents, there have not been many researches for analyzing and understanding it. Many Web images are used for carrying important information but others are not used for it. If images in a Web document can be classified by which have particular information or not, then it would be very useful for analysis and multi-formatting of Web documents. In this paper we introduce the machine learning based methods of classifying Web images as either eliminable or non-eliminable. For this research, we have detected 16 special and rich features for Web images and experimented by using the Bayesian and decision tree methods. As the results, F-measures of 87.09%, 82.72% were achieved for each method and particularly, from the experiments to compare the effects of feature groups, it has proved that the selected features on this study are very useful for Web image classification.
引用
收藏
页码:328 / 335
页数:8
相关论文
共 50 条
  • [21] Quantum machine learning for image classification
    Senokosov, Arsenii
    Sedykh, Alexandr
    Sagingalieva, Asel
    Kyriacou, Basil
    Melnikov, Alexey
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (01):
  • [22] Learning Semantic Text Features for Web Text-Aided Image Classification
    Wang, Dongzhe
    Mao, Kezhi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (12) : 2985 - 2996
  • [23] Classification of Soil Bacteria Based on Machine Learning and Image Processing
    Konopka, Aleksandra
    Struniawski, Karol
    Kozera, Ryszard
    Trzcinski, Pawel
    Sas-Paszt, Lidia
    Lisek, Anna
    Gornik, Krzysztof
    Derkowska, Edyta
    Gluszek, Slawomir
    Sumorok, Beata
    Frac, Magdalena
    COMPUTATIONAL SCIENCE - ICCS 2022, PT III, 2022, 13352 : 263 - 277
  • [24] A Novel Image Classification Algorithm Based on Extreme Learning Machine
    YU Jing
    SONG Wei
    LI Ming
    HOU Jianjun
    WANG Nan
    China Communications, 2015, (S2) : 48 - 54
  • [25] Encrypted image classification based on multilayer extreme learning machine
    Weiru Wang
    Chi-Man Vong
    Yilong Yang
    Pak-Kin Wong
    Multidimensional Systems and Signal Processing, 2017, 28 : 851 - 865
  • [26] Image processing and machine learning based cavings characterization and classification
    Jin, Jian
    Jin, Yan
    Lu, Yunhu
    Pang, Huiwen
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [27] Encrypted image classification based on multilayer extreme learning machine
    Wang, Weiru
    Vong, Chi-Man
    Yang, Yilong
    Wong, Pak-Kin
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2017, 28 (03) : 851 - 865
  • [28] A Novel Approach for Image Classification Based on Extreme Learning Machine
    Lu, Bo
    Duan, Xiaodong
    Wang, Cunrui
    2014 4TH IEEE INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2014, : 381 - 384
  • [29] A Novel Image Classification Algorithm Based on Extreme Learning Machine
    YU Jing
    SONG Wei
    LI Ming
    HOU Jianjun
    WANG Nan
    中国通信, 2015, 12(S2) (S2) : 48 - 54
  • [30] Lung Nodule Image Classification Based on Ensemble Machine Learning
    Mao Keming
    Deng Zhuofu
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (07) : 1679 - 1685