Comparison of Three Machine Learning Approaches to Examine the Genetic and Environmental Predictors of Vitamin D Levels

被引:0
|
作者
Engelman, Corinne D. [1 ]
Lo, Justin [1 ]
O'Brien, Martha [1 ]
Langefeld, Carl D. [2 ]
Fingerlin, Tasha E. [3 ]
Norris, Jill M. [3 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Wake Forest Univ, Winston Salem, NC 27109 USA
[3] Univ Colorado, Boulder, CO 80309 USA
关键词
D O I
暂无
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
76
引用
收藏
页码:774 / 774
页数:1
相关论文
共 50 条
  • [2] Machine learning to examine the genetic underpinnings of cardiac fibrosis at scale
    Nauffal, Victor
    Lubltz, Steven A.
    NATURE GENETICS, 2023, 55 (05) : 736 - 737
  • [3] Predictors of Vitamin D levels in northern climates
    Holler, Y. F.
    Gothard, M. D.
    McBride, M. C.
    ANNALS OF NEUROLOGY, 2011, 70 : S125 - S125
  • [4] Vitamin D and Folate as Predictors of MMSE in Alzheimer's Disease: A Machine Learning Analysis
    Murdaca, Giuseppe
    Banchero, Sara
    Tonacci, Alessandro
    Nencioni, Alessio
    Monacelli, Fiammetta
    Gangemi, Sebastiano
    DIAGNOSTICS, 2021, 11 (06)
  • [5] Genetic Regulation of Vitamin D Levels
    Zari Dastani
    Rui Li
    Brent Richards
    Calcified Tissue International, 2013, 92 : 106 - 117
  • [6] Genetic Regulation of Vitamin D Levels
    Dastani, Zari
    Li, Rui
    Richards, Brent
    CALCIFIED TISSUE INTERNATIONAL, 2013, 92 (02) : 106 - 117
  • [7] ARE VITAMIN D LEVELS PREDICTORS OF FIBROSIS IN PBC PATIENTS?
    Gonzalez, Mayver
    Nguyen, Natalie
    Arriaga, Angel
    Dada, Demi
    Fernandes, Gail Francisca
    Egwim, Chukwuma
    Ankoma-Sey, Victor
    HEPATOLOGY, 2022, 76 : S1516 - S1516
  • [8] Genetic and environmental determinants of vitamin D status
    Bouillon, Roger
    LANCET, 2010, 376 (9736): : 148 - 149
  • [9] Machine learning approaches infer vitamin D signaling: Critical impact of vitamin D receptor binding within topologically associated domains
    Carlberg, Carsten
    Neme, Antonio
    JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2019, 185 : 103 - 109
  • [10] Machine learning for groundwater levels: uncovering the best predictors
    Abu Saleh, Md.
    Rasel, H. M.
    SUSTAINABLE WATER RESOURCES MANAGEMENT, 2024, 10 (05)