Computing Grobner bases by FGLM techniques in a non-commutative setting

被引:14
作者
Borges-Trenard, MA [1 ]
Borges-Quintana, M
Mora, T
机构
[1] Univ Oriente, Fac Sci, Dept Math, Santiago De Cuba 90500, Cuba
[2] Univ Genoa, DISI, Genoa, Italy
关键词
D O I
10.1006/jsco.1999.0415
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A generalization of the FGLM technique is given to compute Grobner bases for two-sided ideals of free finitely generated algebras. Specializations of this algorithm are presented for the cases in which the ideal is determined by either functionals or monoid (group) presentations. Generalizations are discussed in order to compute Grobner bases on (twisted) semigroup rings. (C) 2000 Academic Press.
引用
收藏
页码:429 / 449
页数:21
相关论文
共 17 条
[1]  
ALONSO ME, 1995, DRAFT
[2]  
APEL J, 1998, PROGR COMPUTER SCI A, V15, P35
[3]  
BUCHBERGER B, LONDON MATH SOC LECT, V251, P98
[4]  
BUCHBERGER B, 1982, LECT NOTES COMPUTER, V144, P24
[5]  
Buchberger B., 1970, Aequationes math, V4, P374, DOI 10.1007/BF01844169
[6]   EFFICIENT COMPUTATION OF ZERO-DIMENSIONAL GROBNER BASES BY CHANGE OF ORDERING [J].
FAUGERE, JC ;
GIANNI, P ;
LAZARD, D ;
MORA, T .
JOURNAL OF SYMBOLIC COMPUTATION, 1993, 16 (04) :329-344
[7]  
GIANNI P, 1989, LECT NOTES COMPUT SC, V356, P247
[8]  
Janet M., 1929, LECONS SYSTEMES EQUA
[9]  
KANDRIRODY A, 1987, J SYMB COMPUT, V9, P1
[10]   AN ALGORITHM FOR THE CONSTRUCTION OF MATRIX REPRESENTATIONS FOR FINITELY PRESENTED NONCOMMUTATIVE ALGEBRAS [J].
LABONTE, G .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (01) :27-38