Bispectrality for the quantum Ruijs']jsenaars model and its integrable deformation

被引:29
作者
Chalykh, OA [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Adv Educ & Sci Ctr, Moscow 119899, Russia
关键词
D O I
10.1063/1.533399
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An elementary construction of the eigenfunctions for the quantum rational Ruijsenaars model with integer coupling parameter is presented. As a by-product, we establish the bispectral duality between this model and the trigonometric Calogero-Moser model. In particular, this gives a new way for calculating Jack polynomials. We propose also a certain one-parameter deformation of the Ruijsenaars model, proving its integrability and bispectrality. The generalizations related to other root systems and difference operators by Macdonald are considered. (C) 2000 American Institute of Physics. [S0022-2488(00)03908-6].
引用
收藏
页码:5139 / 5167
页数:29
相关论文
共 31 条
[1]  
BEREST Y, 1998, CRM P LECT NOTES, V14, P9
[2]  
Bourbaki N., 1968, Actualites Scientifiques et Industrielles, V1337
[4]   New integrable generalizations of Calogero-Moser quantum problem [J].
Chalykh, O ;
Feigin, M ;
Veselov, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (02) :695-703
[5]   INTEGRABILITY IN THE THEORY OF SCHRODINGER OPERATOR AND HARMONIC-ANALYSIS [J].
CHALYKH, OA ;
VESELOV, AP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :29-40
[6]   COMMUTATIVE RINGS OF PARTIAL-DIFFERENTIAL OPERATORS AND LIE-ALGEBRAS [J].
CHALYKH, OA ;
VESELOV, AP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 126 (03) :597-611
[7]   The duality of the generalized Calogero and Ruijs']jsenaars problems [J].
Chalykh, OA .
RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (06) :1289-1291
[8]   DOUBLE AFFINE HECKE ALGEBRAS AND MACDONALDS CONJECTURES [J].
CHEREDNIK, I .
ANNALS OF MATHEMATICS, 1995, 141 (01) :191-216
[9]   MACDONALDS EVALUATION CONJECTURES AND DIFFERENCE FOURIER-TRANSFORM [J].
CHEREDNIK, I .
INVENTIONES MATHEMATICAE, 1995, 122 (01) :119-145
[10]  
Dubrovin B. A., 1976, USP MAT NAUK, V31, P55