VM scaling based on Hurst exponent and Markov transition with empirical cloud data

被引:11
作者
Lu, Chien-Tung [1 ]
Chang, Chia-Wei [1 ]
Li, Jung-Shian [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Elect Engn, Inst Comp & Commun Engn, Tainan 70101, Taiwan
关键词
Cloud computing; Resource management; Usage prediction;
D O I
10.1016/j.jss.2014.10.011
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
One of the major benefits of cloud computing is virtualization scaling. Compared to existing studies on virtual machine scaling, this paper introduces Hurst exponent which gives additional characteristics for data trends to supplement the often used Markov transition approach. This approach captures both the long and short-term behaviors of the virtual machines (VMs). The dataset for testing of this approach was gathered from the computer usage of key servers supporting a large university. Performance evaluation shows our approach can assist prediction of VM CPU usage toward effective resource allocation. In turn, this allows the cloud resource provider to monitor and allocate the resource usage of all VMs in order to meet the service level agreements for each VM client. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 207
页数:9
相关论文
共 15 条
[11]   EMAN: Semiautomated software for high-resolution single-particle reconstructions [J].
Ludtke, SJ ;
Baldwin, PR ;
Chiu, W .
JOURNAL OF STRUCTURAL BIOLOGY, 1999, 128 (01) :82-97
[12]  
Mell P., 2012, PUBLIC CLOUD COMPUTI, P97, DOI [DOI 10.1016/B978-0-12-804018-8.15003-X.URL, DOI 10.6028/NIST.SP.800-145]
[13]   The Eucalyptus Open-source Cloud-computing System [J].
Nurmi, Daniel ;
Wolski, Rich ;
Grzegorczyk, Chris ;
Obertelli, Graziano ;
Soman, Sunil ;
Youseff, Lamia ;
Zagorodnov, Dmitrii .
CCGRID: 2009 9TH IEEE INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUTING AND THE GRID, 2009, :124-131
[14]   Dynamically Scaling Applications in the Cloud [J].
Vaquero, Luis M. ;
Rodero-Merino, Luis ;
Buyya, Rajkumar .
ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2011, 41 (01) :45-52
[15]  
Zhang Y, 2007, CCGRID 2007: SEVENTH IEEE INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUTING AND THE GRID, P521