Schrodinger principal-component analysis: On the duality between principal-component analysis and the Schrodinger equation

被引:4
作者
Liu, Ziming [1 ]
Qian, Sitian [2 ]
Wang, Yixuan [3 ]
Yan, Yuxuan [2 ]
Yang, Tianyi [2 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] CALTECH, Appl & Computat Math, Pasadena, CA 91125 USA
关键词
RANDOM-FIELDS; PCA; APPROXIMATION; ALGORITHMS;
D O I
10.1103/PhysRevE.104.025307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Principal component analysis (PCA) has been applied to analyze random fields in various scientific disciplines. However, the explainability of PCA remains elusive unless strong domain-specific knowledge is available. This paper provides a theoretical framework that builds a duality between the PCA eigenmodes of a random field and eigenstates of a Schrodinger equation. Based on the duality we propose the Schrodinger PCA algorithm to replace the expensive PCA solver with a more sample-efficient Schrodinger equation solver. We verify the validity of the theory and the effectiveness of the algorithm with numerical experiments.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Global Modular Principal Component Analysis
    Kadappa, Vijayakumar
    Negi, Atul
    SIGNAL PROCESSING, 2014, 105 : 381 - 388
  • [42] Hierarchical disjoint principal component analysis
    Cavicchia, Carlo
    Vichi, Maurizio
    Zaccaria, Giorgia
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2023, 107 (03) : 537 - 574
  • [43] Efficient fair principal component analysis
    Kamani, Mohammad Mahdi
    Haddadpour, Farzin
    Forsati, Rana
    Mahdavi, Mehrdad
    MACHINE LEARNING, 2022, 111 (10) : 3671 - 3702
  • [44] Weighted sparse principal component analysis
    Van Deun, Katrijn
    Thorrez, Lieven
    Coccia, Margherita
    Hasdemir, Dicle
    Westerhuis, Johan A.
    Smilde, Age K.
    Van Mechelen, Iven
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 195
  • [45] Tensor principal component analysis via convex optimization
    Jiang, Bo
    Ma, Shiqian
    Zhang, Shuzhong
    MATHEMATICAL PROGRAMMING, 2015, 150 (02) : 423 - 457
  • [46] AN ALGORITHM FOR THE PRINCIPAL COMPONENT ANALYSIS OF LARGE DATA SETS
    Halko, Nathan
    Martinsson, Per-Gunnar
    Shkolnisky, Yoel
    Tygert, Mark
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) : 2580 - 2594
  • [47] Online Adaptive Principal Component Analysis and Its extensions
    Yuan, Jianjun
    Lamperski, Andrew
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [48] Online signature verification based on null component analysis and principal component analysis
    Bin Li
    David Zhang
    Kuanquan Wang
    Pattern Analysis and Applications, 2006, 8 : 345 - 356
  • [49] Spatially Weighted Principal Component Analysis for Imaging Classification
    Guo, Ruixin
    Ahn, Mihye
    Zhu, Hongtu
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (01) : 274 - 296
  • [50] Online signature verification based on null component analysis and principal component analysis
    Li, B
    Zhang, D
    Wang, KQ
    PATTERN ANALYSIS AND APPLICATIONS, 2006, 8 (04) : 345 - 356