Schrodinger principal-component analysis: On the duality between principal-component analysis and the Schrodinger equation

被引:4
作者
Liu, Ziming [1 ]
Qian, Sitian [2 ]
Wang, Yixuan [3 ]
Yan, Yuxuan [2 ]
Yang, Tianyi [2 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] CALTECH, Appl & Computat Math, Pasadena, CA 91125 USA
关键词
RANDOM-FIELDS; PCA; APPROXIMATION; ALGORITHMS;
D O I
10.1103/PhysRevE.104.025307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Principal component analysis (PCA) has been applied to analyze random fields in various scientific disciplines. However, the explainability of PCA remains elusive unless strong domain-specific knowledge is available. This paper provides a theoretical framework that builds a duality between the PCA eigenmodes of a random field and eigenstates of a Schrodinger equation. Based on the duality we propose the Schrodinger PCA algorithm to replace the expensive PCA solver with a more sample-efficient Schrodinger equation solver. We verify the validity of the theory and the effectiveness of the algorithm with numerical experiments.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Phantom oscillations in principal component analysis
    Shinn, Maxwell
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (48)
  • [32] Bayesian compressive principal component analysis
    Ma, Di
    Chen, Songcan
    FRONTIERS OF COMPUTER SCIENCE, 2020, 14 (04)
  • [33] Principal Component Analysis for Fingerprint Positioning
    Zhang, Yang
    Ren, Qianqian
    Li, Jinbao
    Pan, Yu
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2020, PT I, 2020, 12452 : 305 - 313
  • [34] Principal component analysis on interval data
    Gioia, Federica
    Lauro, Carlo N.
    COMPUTATIONAL STATISTICS, 2006, 21 (02) : 343 - 363
  • [35] Bilinear Probabilistic Principal Component Analysis
    Zhao, Jianhua
    Yu, Philip L. H.
    Kwok, James T.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (03) : 492 - 503
  • [36] Adaptive robust principal component analysis
    Liu, Yang
    Gao, Xinbo
    Gao, Quanxue
    Shao, Ling
    Han, Jungong
    NEURAL NETWORKS, 2019, 119 : 85 - 92
  • [37] Real Time Principal Component Analysis
    Chowdhury, Ranak Roy
    Adnan, Muhammad Abdullah
    Gupta, Rajesh K.
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 1678 - 1681
  • [38] A principal component analysis of facial expressions
    Calder, AJ
    Burton, AM
    Miller, P
    Young, AW
    Akamatsu, S
    VISION RESEARCH, 2001, 41 (09) : 1179 - 1208
  • [39] Application of microcalorimetry and principal component analysis
    Wang, Jian
    Cheng, Danhong
    Zeng, Nan
    Xia, Houlin
    Fu, Yong
    Yan, Dan
    Zhao, Yanling
    Xiao, Xiaohe
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2010, 102 (01) : 137 - 142
  • [40] Integrative sparse principal component analysis
    Fang, Kuangnan
    Fan, Xinyan
    Zhang, Qingzhao
    Ma, Shuangge
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 166 : 1 - 16