Schrodinger principal-component analysis: On the duality between principal-component analysis and the Schrodinger equation

被引:4
作者
Liu, Ziming [1 ]
Qian, Sitian [2 ]
Wang, Yixuan [3 ]
Yan, Yuxuan [2 ]
Yang, Tianyi [2 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] CALTECH, Appl & Computat Math, Pasadena, CA 91125 USA
关键词
RANDOM-FIELDS; PCA; APPROXIMATION; ALGORITHMS;
D O I
10.1103/PhysRevE.104.025307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Principal component analysis (PCA) has been applied to analyze random fields in various scientific disciplines. However, the explainability of PCA remains elusive unless strong domain-specific knowledge is available. This paper provides a theoretical framework that builds a duality between the PCA eigenmodes of a random field and eigenstates of a Schrodinger equation. Based on the duality we propose the Schrodinger PCA algorithm to replace the expensive PCA solver with a more sample-efficient Schrodinger equation solver. We verify the validity of the theory and the effectiveness of the algorithm with numerical experiments.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Sparse Principal Component Analysis in Hilbert Space
    Qi, Xin
    Luo, Ruiyan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (01) : 270 - 289
  • [22] Spectral simulation study on the influence of the principal component analysis step on principal component regression
    Hasegawa, T
    APPLIED SPECTROSCOPY, 2006, 60 (01) : 95 - 98
  • [23] Data Analysis Using Principal Component Analysis
    Sehgal, Shrub
    Singh, Harpreet
    Agarwal, Mohit
    Bhasker, V.
    Shantanu
    2014 INTERNATIONAL CONFERENCE ON MEDICAL IMAGING, M-HEALTH & EMERGING COMMUNICATION SYSTEMS (MEDCOM), 2015, : 45 - 48
  • [24] Robust Stochastic Principal Component Analysis
    Goes, John
    Zhang, Teng
    Arora, Raman
    Lerman, Gilad
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 266 - 274
  • [25] Principal component analysis for interval data
    Billard, L.
    Le-Rademacher, J.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2012, 4 (06): : 535 - 540
  • [26] Efficient fair principal component analysis
    Mohammad Mahdi Kamani
    Farzin Haddadpour
    Rana Forsati
    Mehrdad Mahdavi
    Machine Learning, 2022, 111 : 3671 - 3702
  • [27] Streaming Sparse Principal Component Analysis
    Yang, Wenzhuo
    Xu, Huan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 494 - 503
  • [28] Sparse Generalised Principal Component Analysis
    Smallman, Luke
    Artemiou, Andreas
    Morgan, Jennifer
    PATTERN RECOGNITION, 2018, 83 : 443 - 455
  • [29] Principal component analysis in the wavelet domain
    Lim, Yaeji
    Kwon, Junhyeon
    Oh, Hee-Seok
    PATTERN RECOGNITION, 2021, 119
  • [30] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    NEUROCOMPUTING, 2020, 391 : 119 - 128