Schrodinger principal-component analysis: On the duality between principal-component analysis and the Schrodinger equation

被引:4
作者
Liu, Ziming [1 ]
Qian, Sitian [2 ]
Wang, Yixuan [3 ]
Yan, Yuxuan [2 ]
Yang, Tianyi [2 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] CALTECH, Appl & Computat Math, Pasadena, CA 91125 USA
关键词
RANDOM-FIELDS; PCA; APPROXIMATION; ALGORITHMS;
D O I
10.1103/PhysRevE.104.025307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Principal component analysis (PCA) has been applied to analyze random fields in various scientific disciplines. However, the explainability of PCA remains elusive unless strong domain-specific knowledge is available. This paper provides a theoretical framework that builds a duality between the PCA eigenmodes of a random field and eigenstates of a Schrodinger equation. Based on the duality we propose the Schrodinger PCA algorithm to replace the expensive PCA solver with a more sample-efficient Schrodinger equation solver. We verify the validity of the theory and the effectiveness of the algorithm with numerical experiments.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Novel Algorithms for Lp-Quasi-Norm Principal-Component Analysis
    Chachlakis, Dimitris G.
    Markopoulos, Panos P.
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1045 - 1049
  • [2] Reduced-Rank L1-Norm Principal-Component Analysis With Performance Guarantees
    Kamrani, Hossein
    Asli, Alireza Zolghadr
    Markopoulos, Panos P.
    Langberg, Michael
    Pados, Dimitris A.
    Karystinos, George N.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 240 - 255
  • [3] Efficient L1-Norm Principal-Component Analysis via Bit Flipping
    Markopoulos, Panos P.
    Kundu, Sandipan
    Chamadia, Shubham
    Pados, Dimitris A.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (16) : 4252 - 4264
  • [4] L1-norm Principal-Component Analysis in L2-norm-reduced-rank Data Subspaces
    Markopoulos, Panos P.
    Pados, Dimitris A.
    Karystinos, George N.
    Langberg, Michael
    COMPRESSIVE SENSING VI: FROM DIVERSE MODALITIES TO BIG DATA ANALYTICS, 2017, 10211
  • [5] Robust Principal Component Analysis?
    Candes, Emmanuel J.
    Li, Xiaodong
    Ma, Yi
    Wright, John
    JOURNAL OF THE ACM, 2011, 58 (03)
  • [6] Principal component analysis
    Bro, Rasmus
    Smilde, Age K.
    ANALYTICAL METHODS, 2014, 6 (09) : 2812 - 2831
  • [7] Principal component analysis
    Greenacre, Michael
    Groenen, Patrick J. F.
    Hastie, Trevor
    D'Enza, Alfonso Lodice
    Markos, Angelos
    Tuzhilina, Elena
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [8] Segmented principal component transform-principal component analysis
    Barros, AS
    Rutledge, DN
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 78 (1-2) : 125 - 137
  • [9] Comparison between Principal Component Analysis and independent component analysis in electroencephalograms modelling
    Bugli, C.
    Lambert, P.
    BIOMETRICAL JOURNAL, 2007, 49 (02) : 312 - 327
  • [10] Anomaly Detection Based on Kernel Principal Component and Principal Component Analysis
    Wang, Wei
    Zhang, Min
    Wang, Dan
    Jiang, Yu
    Li, Yuliang
    Wu, Hongda
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 2222 - 2228