Schrodinger principal-component analysis: On the duality between principal-component analysis and the Schrodinger equation

被引:4
作者
Liu, Ziming [1 ]
Qian, Sitian [2 ]
Wang, Yixuan [3 ]
Yan, Yuxuan [2 ]
Yang, Tianyi [2 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] CALTECH, Appl & Computat Math, Pasadena, CA 91125 USA
关键词
RANDOM-FIELDS; PCA; APPROXIMATION; ALGORITHMS;
D O I
10.1103/PhysRevE.104.025307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Principal component analysis (PCA) has been applied to analyze random fields in various scientific disciplines. However, the explainability of PCA remains elusive unless strong domain-specific knowledge is available. This paper provides a theoretical framework that builds a duality between the PCA eigenmodes of a random field and eigenstates of a Schrodinger equation. Based on the duality we propose the Schrodinger PCA algorithm to replace the expensive PCA solver with a more sample-efficient Schrodinger equation solver. We verify the validity of the theory and the effectiveness of the algorithm with numerical experiments.
引用
收藏
页数:13
相关论文
共 33 条
[1]   Multiscale principal component analysis [J].
Akinduko, A. A. ;
Gorban, A. N. .
2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
[2]   SAMPLED FORMS OF FUNCTIONAL PCA IN REPRODUCING KERNEL HILBERT SPACES [J].
Amini, Arash A. ;
Wainwright, Martin J. .
ANNALS OF STATISTICS, 2012, 40 (05) :2483-2510
[3]   DIFFERENTIAL APPROXIMATION APPLIED TO SOLUTION OF CONVOLUTION EQUATIONS [J].
BELLMAN, R ;
KOTKIN, B ;
KALABA, R .
MATHEMATICS OF COMPUTATION, 1964, 18 (87) :487-&
[4]  
Bócsi B, 2011, IEEE INT C INT ROBOT, P698, DOI 10.1109/IROS.2011.6048552
[5]  
Chris D., 2004, P 21 INT C MACHINE L, P29
[6]   Principal Component Analysis on Spatial Data: An Overview [J].
Demsar, Urska ;
Harris, Paul ;
Brunsdon, Chris ;
Fotheringham, A. Stewart ;
McLoone, Sean .
ANNALS OF THE ASSOCIATION OF AMERICAN GEOGRAPHERS, 2013, 103 (01) :106-128
[7]  
Distefano N., 1970, International Journal of Solids and Structures, V6, P1021, DOI 10.1016/0020-7683(70)90011-9
[8]   Exact estimates of the rate of approximation of convolution operators [J].
Draganov, Borislav R. .
JOURNAL OF APPROXIMATION THEORY, 2010, 162 (05) :952-979
[9]  
Durrer, 2020, COSMIC MICROWAVE BAC
[10]   Interacting Langevin Diffusions: Gradient Structure and Ensemble Kalman Sampler [J].
Garbuno-Inigo, Alfredo ;
Hoffmann, Franca ;
Li, Wuchen ;
Stuart, Andrew M. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (01) :412-441