Obtain high dimensional integrable models by means of Miura type noninvertible transformation

被引:19
作者
Lou, SY [1 ]
机构
[1] Shanghai Jiao Tong Univ, Apply Dept Phys, Shanghai 200030, Peoples R China
[2] Ningbo Univ, Dept Phys, Ningbo 315211, Peoples R China
关键词
high dimensional integrable models; noninvertible deformation; wave equation; Miura type transformation;
D O I
10.7498/aps.49.1657
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Searching for high dimensional integrable models (especially in 3 + 1 dimensions) is one of the most important problems in nonlinear physics. In this paper,we establish a method to find some high dimensional integrable models via some noninvertible deformation relations. A noninvertible deformation relation may not only transform an integrable model to a nonintegrable model,but also deform a nonintegrable model to an integrable model. Concretely,starting from a noninvertible Miura type transformation relation and the linear wave equation,we obtain a nontrivial high dimensional Painleve integrable model.
引用
收藏
页码:1657 / 1662
页数:6
相关论文
共 43 条
[1]   ON THE INFINITE-DIMENSIONAL SYMMETRY GROUP OF THE DAVEY-STEWARTSON EQUATIONS [J].
CHAMPAGNE, B ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (01) :1-8
[2]   NONCLASSICAL SYMMETRY REDUCTIONS FOR THE KADOMTSEV-PETVIASHVILI EQUATION [J].
CLARKSON, PA ;
WINTERNITZ, P .
PHYSICA D, 1991, 49 (03) :257-272
[3]   ALGORITHMS FOR THE NONCLASSICAL METHOD OF SYMMETRY REDUCTIONS [J].
CLARKSON, PA ;
MANSFIELD, EL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (06) :1693-1719
[4]   Nonclassical symmetry reductions of the Boussinesq equation [J].
Clarkson, PA .
CHAOS SOLITONS & FRACTALS, 1995, 5 (12) :2261-2301
[5]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[6]   Nonlinear dynamics of vortices in ultraclean type-II superconductors: Integrable wave equations in cylindrical geometry [J].
Coffey, MW .
PHYSICAL REVIEW B, 1996, 54 (02) :1279-1285
[7]   Explosion of soliton in a multicomponent plasma [J].
Das, GC ;
Sarma, J ;
Uberoi, C .
PHYSICS OF PLASMAS, 1997, 4 (06) :2095-2100
[8]   SYMMETRY REDUCTION FOR THE KADOMTSEV-PETVIASHVILI EQUATION USING A LOOP ALGEBRA [J].
DAVID, D ;
KAMRAN, N ;
LEVI, D ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1225-1237
[9]   (0,2) Non-critical strings in six dimensions [J].
Distler, J ;
Hanany, A .
NUCLEAR PHYSICS B, 1997, 490 (1-2) :75-90
[10]   Gauge symmetry in background charge conformal field theory [J].
Dolan, L .
NUCLEAR PHYSICS B, 1997, 489 (1-2) :245-263