Kernel density estimation in mixture models with known mixture proportions

被引:0
作者
Liu, Siyun [1 ]
Yu, Tao [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Data Sci, Singapore 117546, Singapore
关键词
Bayesian information criterion; EM algorithm; kernel density estimator; mixture model; nonparametric inference; KIN-COHORT; NONPARAMETRIC-ESTIMATION; LIKELIHOOD; IDENTIFIABILITY; UNCERTAINTY; SIGNATURE; RISK;
D O I
10.1002/sim.9187
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we consider the density estimation for data with a mixture structure, where the component densities are assumed unknown, but for each observation, the probabilities of its membership to the subpopulations are known or estimable from other resources. Data of this kind arise from practice and have wide applications. Motivated from the classical kernel density estimation method for a single population, we propose a weighted kernel density estimation method to estimate the component density functions nonparametrically. Within the framework of the EM algorithm, we derive an algorithm that computes our proposed estimates effectively. Via extensive simulation studies, we demonstrate that our methods outperform the existing methods in most occasions. We further compare our methods with existing methods by real data examples.
引用
收藏
页码:6360 / 6372
页数:13
相关论文
共 32 条
[1]   A Generalized Kruskal-Wallis Test Incorporating Group Uncertainty with Application to Genetic Association Studies [J].
Acar, Elif F. ;
Sun, Lei .
BIOMETRICS, 2013, 69 (02) :427-435
[2]   Quantifying uncertainty in genotype calls [J].
Carvalho, Benilton S. ;
Louis, Thomas A. ;
Irizarry, Rafael A. .
BIOINFORMATICS, 2010, 26 (02) :242-249
[3]   A marginal likelihood approach for estimating penetrance from kin-cohort designs [J].
Chatterjee, N ;
Wacholder, S .
BIOMETRICS, 2001, 57 (01) :245-252
[4]   Nonparametric estimation of the effects of quantitative trait loci [J].
Fine, JP ;
Zou, F ;
Yandell, BS .
BIOSTATISTICS, 2004, 5 (04) :501-513
[5]   Is my species distribution model fit for purpose? Matching data and models to applications [J].
Guillera-Arroita, Gurutzeta ;
Lahoz-Monfort, Jose J. ;
Elith, Jane ;
Gordon, Ascelin ;
Kujala, Heini ;
Lentini, Pia E. ;
McCarthy, Michael A. ;
Tingley, Reid ;
Wintle, Brendan A. .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2015, 24 (03) :276-292
[6]   A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter [J].
Hammer, SM ;
Katzenstein, DA ;
Hughes, MD ;
Gundacker, H ;
Schooley, RT ;
Haubrich, RH ;
Henry, WK ;
Lederman, MM ;
Phair, JP ;
Niu, M ;
Hirsch, MS ;
Merigan, TC ;
Blaschke, TF ;
Simpson, D ;
McLaren, C ;
Rooney, J ;
Salgo, M .
NEW ENGLAND JOURNAL OF MEDICINE, 1996, 335 (15) :1081-1090
[7]   Pairwise rank-based likelihood for estimation and inference on the mixture proportion [J].
Heller, G ;
Qin, J .
BIOMETRICS, 2001, 57 (03) :813-817
[8]   Case-control studies with contaminated controls [J].
Lancaster, T ;
Imbens, G .
JOURNAL OF ECONOMETRICS, 1996, 71 (1-2) :145-160
[9]  
LANDER ES, 1989, GENETICS, V121, P185
[10]  
Li PF, 2016, ICSA BOOK SER STAT, P195, DOI 10.1007/978-981-10-2594-5_11