DEVIATIONS AND SPREADS OF HOLOMORPHIC CURVES OF FINITE LOWER ORDER

被引:0
作者
Wu, Nan [1 ]
机构
[1] China Univ Min & Technol Beijing, Sch Sci, Dept Math, Beijing 100083, Peoples R China
来源
HOUSTON JOURNAL OF MATHEMATICS | 2019年 / 45卷 / 02期
关键词
Holomorphic curve; deviation; spread; GROWTH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will investigate the relation between the number of maximum modulus points, spread and growth of a holomorphic curve. We use the method of I. I. Marchenko and E. Ciechanowicz [3] to generalize their results of meromorphic functions to the holomorphic curves.
引用
收藏
页码:395 / 411
页数:17
相关论文
共 15 条
[1]  
Baernstein A., 1974, ACTA MATH-DJURSHOLM, V133, P139, DOI DOI 10.1007/BF02392144
[2]  
Bergweiler W., 1994, J ANAL MATH, V64, P327, DOI 10.1007/BF03008414
[3]  
Ciechanowicz E, 2004, ADV COMP ANAL APPL, V3, P117
[4]  
ESSEN M, 1982, P ROY IRISH ACAD A, V82, P201
[5]   SPACE ANALOGUES OF SOME THEOREMS FOR SUBHARMONIC AND MEROMORPHIC FUNCTIONS [J].
GARIEPY, R ;
LEWIS, JL .
ARKIV FOR MATEMATIK, 1975, 13 (01) :91-105
[6]  
Hayman WK., 1958, Multivalent functions
[7]  
Kowalski A., OSAKA J MATH
[8]  
Kowalski A., 2016, Mat Stud, V46, P137, DOI [10.15330/ms.46.2.137-151, DOI 10.15330/MS.46.2.137-151]
[9]   ON THE MAGNITUDES OF DEVIATIONS AND SPREADS OF MEROMORPHIC FUNCTIONS OF FINITE LOWER ORDER [J].
MARCHENKO, II .
SBORNIK MATHEMATICS, 1995, 186 (3-4) :391-408
[10]  
Niino K., 1977, KODAI MATH SEM REP, V28, P361