Slow decay for one-dimensional porous dissipation elasticity

被引:131
作者
Quintanilla, R [1 ]
机构
[1] UPC, ETSEIT, Barcelona 08222, Spain
关键词
porous elasticity; stability; slow decay;
D O I
10.1016/S0893-9659(03)00025-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the one-dimensional linear theory of porous elastic solids. We prove the slow decay for the solutions of two initial-boundary value problems determined by several boundary conditions. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:487 / 491
页数:5
相关论文
共 13 条
[1]   Strong asymptotic stability of a compactly coupled system of wave equations [J].
Aassila, M .
APPLIED MATHEMATICS LETTERS, 2001, 14 (03) :285-290
[2]  
[Anonymous], 1997, ARCH MECH ARCH MECH
[3]  
Ciarletta M., 1993, PITMAN RES NOTES MAT, V293
[4]   THE VISCOELASTIC BEHAVIOR OF LINEAR ELASTIC-MATERIALS WITH VOIDS [J].
COWIN, SC .
JOURNAL OF ELASTICITY, 1985, 15 (02) :185-191
[5]  
COWIN SC, 1983, J ELASTICITY, V13, P125, DOI 10.1007/BF00041230
[6]  
Dieudonne M.J., 1938, THEORIE ANAL POLYNOM
[7]   DECAY-ESTIMATES AND ENERGY BOUNDS FOR POROUS ELASTIC CYLINDERS [J].
IESAN, D ;
QUINTANILLA, R .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1995, 46 (02) :268-281
[8]  
Jiang S., 2000, Evolution Equations in Thermoelasticity
[9]  
MARTI F, 1995, P 14 INT C CYCL THEI, P45
[10]  
NUNZIATO JW, 1979, ARCH RATION MECH AN, V72, P175, DOI 10.1007/BF00249363