The use of restricted cubic splines to approximate complex hazard functions in the analysis of time-to-event data: a simulation study

被引:91
作者
Rutherford, Mark J. [1 ]
Crowther, Michael J. [1 ]
Lambert, Paul C. [1 ,2 ]
机构
[1] Univ Leicester, Dept Hlth Sci, Leicester, Leics, England
[2] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
关键词
flexible parametric models; survival analysis; restricted cubic splines; simulation; FLEXIBLE PARAMETRIC MODELS; PROPORTIONAL-HAZARDS; REGRESSION-MODELS; RELATIVE SURVIVAL; CANCER;
D O I
10.1080/00949655.2013.845890
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
If interest lies in reporting absolute measures of risk from time-to-event data then obtaining an appropriate approximation to the shape of the underlying hazard function is vital. It has previously been shown that restricted cubic splines can be used to approximate complex hazard functions in the context of time-to-event data. The degree of complexity for the spline functions is dictated by the number of knots that are defined. We highlight through the use of a motivating example that complex hazard function shapes are often required when analysing time-to-event data. Through the use of simulation, we show that provided a sufficient number of knots are used, the approximated hazard functions given by restricted cubic splines fit closely to the true function for a range of complex hazard shapes. The simulation results also highlight the insensitivity of the estimated relative effects (hazard ratios) to the correct specification of the baseline hazard.
引用
收藏
页码:777 / 793
页数:17
相关论文
共 32 条
[1]  
Akaike H., 1973, Selected Papers of Hirotugu Akaike, P199, DOI 10.1007/978-1-4612-1694-0_15
[2]   Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial [J].
Albain, Kathy S. ;
Barlow, William E. ;
Shak, Steven ;
Hortobagyi, Gabriel N. ;
Livingston, Robert B. ;
Yeh, I-Tien ;
Ravdin, Peter ;
Bugarini, Roberto ;
Boehner, Frederick L. ;
Davidson, Nancy E. ;
Sledge, George W. ;
Winer, Eric P. ;
Hudis, Clifford ;
Ingle, James N. ;
Perez, Edith A. ;
Pritchard, Kathleen I. ;
Shepherd, Lois ;
Gralow, Julie R. ;
Yoshizawa, Carl ;
Allred, D. Craig ;
Osborne, C. Kent ;
Hayes, Daniel F. .
LANCET ONCOLOGY, 2010, 11 (01) :55-65
[3]   Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models [J].
Andersson, Therese M. L. ;
Dickman, Paul W. ;
Eloranta, Sandra ;
Lambert, Paul C. .
BMC MEDICAL RESEARCH METHODOLOGY, 2011, 11
[4]  
[Anonymous], 2011, Stata statistical software: Release 12
[5]   Survival estimation through the cumulative hazard function with monotone natural cubic splines [J].
Bantis, Leonidas E. ;
Tsimikas, John V. ;
Georgiou, Stelios D. .
LIFETIME DATA ANALYSIS, 2012, 18 (03) :364-396
[6]   Generating survival times to simulate Cox proportional hazards models [J].
Bender, R ;
Augustin, T ;
Blettner, M .
STATISTICS IN MEDICINE, 2005, 24 (11) :1713-1723
[7]   Multimodel inference - understanding AIC and BIC in model selection [J].
Burnham, KP ;
Anderson, DR .
SOCIOLOGICAL METHODS & RESEARCH, 2004, 33 (02) :261-304
[8]  
Coleman M, 1999, SERIES SMPS, V61
[9]   Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution [J].
Cox, Christopher ;
Chu, Haitao ;
Schneider, Michael F. ;
Munoz, Alvaro .
STATISTICS IN MEDICINE, 2007, 26 (23) :4352-4374
[10]  
COX DR, 1972, J R STAT SOC B, V34, P187