Parameter estimation algorithms based on a physics-based HRR moving target model

被引:0
作者
Ma, JS [1 ]
Ahalt, SC [1 ]
机构
[1] Ohio State Univ, Dept Elect Engn, Columbus, OH 43210 USA
来源
ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY VII | 2000年 / 4053卷
关键词
High Range Resolution (HRR) radar; HRR radar modeling; feature extraction; clutter suppression; moving target identification; parameter estimation;
D O I
10.1117/12.396352
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In contrast to Synthetic Aperture Radar (SAR), High Range Resolution (HRR) radar may economically provide satisfactory target resolution when applied to moving targets scenarios. We have devised a series of new physics-based HRR moving target models with different degrees of simplification. These models represent the scatterers from both targets and clutter equally. By employing these models, we can unify the studies of both clutter suppression and target feature extraction into a single topic of model parameter estimation. Therefore, finding reliable parameter estimation algorithms based on these models becomes an important topic for target identification using HRR signatures. This paper derives and presents two feasible parameter estimation algorithms. The first algorithm (1DPE) reduces the 2D-estimation problem to two 1D-estimation problems, and solves the problems by employing some mature 1D-estirnation algorithms. The second algorithm (2DFT) utilizes the 2D Discrete Fourier Transform (DFT) to estimate the model parameters by simply applying the 2D DFT to the HRR data, and obtaining the estimation of model parameters from the peaks of the 2D DFT. In order to verify the performance of these algorithms, we performed a series of simulation experiments and the experimental results are presented in this paper. Finally, a brief comparison of these two algorithms is also presented.
引用
收藏
页码:394 / 404
页数:3
相关论文
共 50 条
[21]   The parameter estimation algorithms based on the dynamical response measurement data [J].
Xu, Ling .
ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (11)
[22]   Should we use parameter estimation or state estimation based FDI algorithms? [J].
Jiang, J ;
Zhao, Q .
(SAFEPROCESS'97): FAULT DETECTION, SUPERVISION AND SAFETY FOR TECHNICAL PROCESSES 1997, VOLS 1-3, 1998, :459-464
[23]   Parameter estimation of PEMFC model based on Harris Hawks' optimization and atom search optimization algorithms [J].
Mossa, Mahmoud A. ;
Kamel, Omar Makram ;
Sultan, Hamdy M. ;
Diab, Ahmed A. Zaki .
NEURAL COMPUTING & APPLICATIONS, 2021, 33 (11) :5555-5570
[24]   Parameter estimation of PEMFC model based on Harris Hawks’ optimization and atom search optimization algorithms [J].
Mahmoud A. Mossa ;
Omar Makram Kamel ;
Hamdy M. Sultan ;
Ahmed A. Zaki Diab .
Neural Computing and Applications, 2021, 33 :5555-5570
[25]   Moving Target Parameter Estimation Algorithm Using Contrast Optimization [J].
Jing, Yu ;
Yaan, Li .
2016 13TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2016, :731-734
[26]   Parameter estimation for SAR moving target in complex image domain [J].
Yu Zuo ;
Jia Xu ;
YingNing Peng ;
XiangGen Xia .
Science China Information Sciences, 2010, 53 :854-866
[27]   Parameter estimation for SAR moving target in complex image domain [J].
Zuo Yu ;
Xu Jia ;
Peng YingNing ;
Xia XiangGen .
SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (04) :854-866
[28]   Parameter estimation for SAR moving target in complex image domain [J].
ZUO Yu XU Jia PENG YingNing XIA XiangGen Department of Electronic Engineering Tsinghua University Beijing China .
Science China(Information Sciences), 2010, 53 (04) :854-866
[29]   A Physics-Based Hyper Parameter Optimized Federated Multi-Layered Deep Learning Model for Intrusion Detection in IoT Networks [J].
Chandnani, Chirag Jitendra ;
Agarwal, Vedik ;
Kulkarni, Shlok Chetan ;
Aren, Aditya ;
Amali, D. Geraldine Bessie ;
Srinivasan, Kathiravan .
IEEE ACCESS, 2025, 13 :21992-22010
[30]   Parameter estimation of underwater moving object based on instantaneous frequency estimate [J].
Yang, Y. (yxyang@nwpu.edu.cn), 2013, Editorial Board of Journal of Harbin Engineering (34) :1089-1093+1107