Parameter estimation algorithms based on a physics-based HRR moving target model

被引:0
作者
Ma, JS [1 ]
Ahalt, SC [1 ]
机构
[1] Ohio State Univ, Dept Elect Engn, Columbus, OH 43210 USA
来源
ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY VII | 2000年 / 4053卷
关键词
High Range Resolution (HRR) radar; HRR radar modeling; feature extraction; clutter suppression; moving target identification; parameter estimation;
D O I
10.1117/12.396352
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In contrast to Synthetic Aperture Radar (SAR), High Range Resolution (HRR) radar may economically provide satisfactory target resolution when applied to moving targets scenarios. We have devised a series of new physics-based HRR moving target models with different degrees of simplification. These models represent the scatterers from both targets and clutter equally. By employing these models, we can unify the studies of both clutter suppression and target feature extraction into a single topic of model parameter estimation. Therefore, finding reliable parameter estimation algorithms based on these models becomes an important topic for target identification using HRR signatures. This paper derives and presents two feasible parameter estimation algorithms. The first algorithm (1DPE) reduces the 2D-estimation problem to two 1D-estimation problems, and solves the problems by employing some mature 1D-estirnation algorithms. The second algorithm (2DFT) utilizes the 2D Discrete Fourier Transform (DFT) to estimate the model parameters by simply applying the 2D DFT to the HRR data, and obtaining the estimation of model parameters from the peaks of the 2D DFT. In order to verify the performance of these algorithms, we performed a series of simulation experiments and the experimental results are presented in this paper. Finally, a brief comparison of these two algorithms is also presented.
引用
收藏
页码:394 / 404
页数:3
相关论文
共 50 条
[11]   Scalable Physics-Based Maximum Likelihood Estimation Using Hierarchical Matrices [J].
Chen, Yian ;
Anitescu, Mihai .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (02) :682-725
[12]   Physics-Based Lumped-Parameter Modeling of Automotive Canister Fuel Purge [J].
Franchek, Matthew ;
Ebrahimi, Behrouz ;
Grigoriadis, Karolos ;
Makki, Imad .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2016, 138 (07)
[13]   Physics-Based Lumped-Parameter Modeling of Automotive Canister Fuel Purge [J].
Francheck, Matthew ;
Ebrahimi, Behrouz ;
Grigoriadis, Karolos ;
Makki, Imad .
2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, :4729-4734
[14]   Self-supervised IVIM DWI parameter estimation with a physics based forward model [J].
Vasylechko, Serge Didenko ;
Warfield, Simon K. ;
Afacan, Onur ;
Kurugol, Sila .
MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (02) :904-914
[15]   Comparison of parameter and state estimation based FDI algorithms [J].
Jiang, J ;
Zhao, Q .
(SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, :627-632
[16]   Relevance feedback based on parameter estimation of target distribution [J].
Sia, KC ;
King, I .
PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, :1974-1979
[17]   Design Target Parameter Estimation System Based on DSP [J].
Li, Wei-bing ;
Gao, Qian ;
Zhang, Ping-chuan .
INTERNATIONAL CONFERENCE ON SOLID STATE DEVICES AND MATERIALS SCIENCE, 2012, 25 :1576-1581
[18]   Towards real-time (milliseconds) parameter estimation of lithium-ion batteries using reformulated physics-based models [J].
Boovaragavan, Vijayasekaran ;
Harinipriya, S. ;
Subramanian, Venkat R. .
JOURNAL OF POWER SOURCES, 2008, 183 (01) :361-365
[19]   Vector Motion Parameter Estimation for an Approaching Missile Based on an Extended-Target Model [J].
Lv, Peng ;
Wei, Guohua ;
Cui, Wei .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (10) :5464-5474
[20]   Least squares based iterative parameter estimation algorithms for multivariate autoregressive moving average systems using the decomposition [J].
Ding Feng ;
Wang Feifei ;
Pan Jian .
PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, :1981-1986