pH-Responsive hyaluronated liposomes for docetaxel delivery

被引:46
|
作者
Lee, Jae Min [1 ]
Park, Hongsuk [2 ]
Oh, Kyung Taek [3 ]
Lee, Eun Seong [1 ]
机构
[1] Catholic Univ Korea, Dept Biotechnol, 43 Jibong Ro, Bucheon Si 14662, Gyeonggi Do, South Korea
[2] Washington Univ, Sch Med, Div Endocrinol Metab & Lipid Res, St Louis, MO 63110 USA
[3] Chung Ang Univ, Coll Pharm, 84 Heukseok Ro, Seoul 06974, South Korea
基金
新加坡国家研究基金会;
关键词
pH-Responsive liposome; Hyaluronic acid; 3-Diethylaminopropyl (DEAP); Docetaxel; Endosomal escape; DRUG-DELIVERY; TARGETED DELIVERY; CANCER-THERAPY; IN-VIVO; ACID; CELLS; NANOPARTICLES; SYSTEM; CD44; DESTABILIZATION;
D O I
10.1016/j.ijpharm.2018.06.028
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
In this study, we report pH-responsive liposomes consisting of hydrogenated soy phosphatidylcholine (HSPC) as a lipid, hyaluronic acid (HA) grafted with functional 3-diethylaminopropyl (DEAP) groups (hereafter denoted as HA-g-DEAP) as a pH-responsive polymer, and docetaxel (DTX) as an antitumor drug. DTX-loaded HSPC liposomes were prepared via a conventional liposome manufacturing procedure and then were decorated with HA-gDEAP (HA-g-DEAP(0.15), HA-g-DEAP(0.25), and HA-g-DEAP(0.40), according to the molar conjugate ratio of DEAP to HA) in an aqueous solution (pH 7.4), by sonication. The liposomes with HA-g-DEAP(0.40) allowed the efficient release of the encapsulated DTX content when the pH of the solution decreased to 6.5 (Le., endosomal pH), owing to the acidic pH-induced protonation of the DEAP anchored to the vesicular lipid bilayers. These hyaluronated liposomes were effective at entering the human colon carcinoma HCT-116 cells with a CD44 receptor overexpression. In an in vitro tumor cell cytotoxicity test, the DTX-loaded liposomes caused a significant increase in HCT-116 tumor cell death, revealing their pharmaceutical potential in tumor therapy.
引用
收藏
页码:377 / 384
页数:8
相关论文
共 50 条
  • [41] pH-responsive mesoporous silica nanocarriers for anticancer drug delivery
    Zhou, Xiaojun
    Feng, Wei
    Qiu, Kexin
    Wang, Weizhong
    He, Chuanglong
    JOURNAL OF CONTROLLED RELEASE, 2013, 172 (01) : E22 - E23
  • [42] pH-Responsive Microencapsulation Systems for the Oral Delivery of Polyanhydride Nanoparticles
    Sharpe, Lindsey A.
    Ramirez, Julia E. Vela
    Haddadin, Olivia M.
    Ross, Kathleen A.
    Narasimhan, Balaji
    Peppas, Nicholas A.
    BIOMACROMOLECULES, 2018, 19 (03) : 793 - 802
  • [43] pH-Responsive Lyotropic Liquid Crystals for Controlled Drug Delivery
    Negrini, Renata
    Mezzenga, Raffaele
    LANGMUIR, 2011, 27 (09) : 5296 - 5303
  • [44] pH-Responsive Nanofibers for Precise and Sequential Delivery of Multiple Payloads
    Theerasilp, Man
    Crespy, Daniel
    ACS APPLIED BIO MATERIALS, 2019, 2 (10): : 4283 - 4290
  • [45] Mathematical modelling of drug delivery from pH-responsive nanocontainers
    Pontrelli, G.
    Toniolo, G.
    McGinty, S.
    Peri, D.
    Succi, S.
    Chatgilialoglu, C.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 131
  • [46] Functional polyurethane nanomicelle with pH-responsive drug delivery property
    Song, Yifan
    Chai, Yun
    Xu, Kai
    Zhang, Puyu
    E-POLYMERS, 2018, 18 (05): : 409 - 417
  • [47] Facile preparation of pH-responsive polyurethane nanocarrier for oral delivery
    Nabid, Mohammad Reza
    Omrani, Ismail
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 69 : 532 - 537
  • [48] pH-responsive polymer micelles for methotrexate delivery at tumor microenvironments
    Darlen Carrillo-Castillo, Teresa
    Servando Castro-Carmona, Javier
    Luna-Velasco, Antonia
    Armando Zaragoza-Contreras, Erasto
    E-POLYMERS, 2020, 20 (01) : 624 - 635
  • [49] pH-responsive alginate-based hydrogels for protein delivery
    Lima, Diego S.
    Tenorio-Neto, Ernandes T.
    Lima-Tenorio, Michele K.
    Guilherme, Marcos R.
    Scariot, Debora B.
    Nakamura, Celso V.
    Muniz, Edvani C.
    Rubira, Adley F.
    JOURNAL OF MOLECULAR LIQUIDS, 2018, 262 : 29 - 36
  • [50] pH-Responsive nanofiber buttresses as local drug delivery devices
    Altinbasak, Ismail
    Kocak, Salli
    Colby, Aaron H.
    Alp, Yasin
    Sanyal, Rana
    Grinstaff, Mark W.
    Sanyal, Amitav
    BIOMATERIALS SCIENCE, 2023, 11 (03) : 813 - 821