Fast Stochastic Quadrature for Approximate Maximum-Likelihood Estimation

被引:0
|
作者
Piatkowski, Nico [1 ]
Morik, Katharina [1 ]
机构
[1] TU Dortmund, Dept Comp Sci, AI Grp, D-44221 Dortmund, Germany
关键词
COMPLEXITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent stochastic quadrature techniques for undirected graphical models rely on near-minimax degree-k polynomial approximations to the model's potential function for inferring the partition function. While providing desirable statistical guarantees, typical constructions of such approximations are themselves not amenable to efficient inference. Here, we develop a class of Monte Carlo sampling algorithms for efficiently approximating the value of the partition function, as well as the associated pseudo-marginals. More precisely, for pairwise models with n vertices and m edges, the complexity can be reduced from O(d(k)) to O(k(4) + kn + m), where d >= 4m is the parameter dimension. We also consider the uses of stochastic quadrature for the problem of maximum-likelihood (ML) parameter estimation. For completely observed data, our analysis gives rise to a probabilistic bound on the log-likelihood of the model. Maximizing this bound yields an approximate ML estimate which, in analogy to the moment-matching of exact ML estimation, can be interpreted in terms of pseudo-moment-matching. We present experimental results illustrating the behavior of this approximate ML estimator.
引用
收藏
页码:715 / 724
页数:10
相关论文
共 50 条
  • [1] APPROXIMATE MAXIMUM-LIKELIHOOD FREQUENCY ESTIMATION
    STOICA, P
    HANDEL, P
    SODERSTROM, T
    AUTOMATICA, 1994, 30 (01) : 131 - 145
  • [2] LOCATION AND SPECTRUM ESTIMATION BY APPROXIMATE MAXIMUM-LIKELIHOOD
    BOHME, JF
    ADVANCED ALGORITHMS AND ARCHITECTURES FOR SIGNAL PROCESSING IV, 1989, 1152 : 326 - 337
  • [3] APPROXIMATE MAXIMUM-LIKELIHOOD APPROACH TO ARMA SPECTRAL ESTIMATION
    STOICA, P
    FRIEDLANDER, B
    SODERSTROM, T
    INTERNATIONAL JOURNAL OF CONTROL, 1987, 45 (04) : 1281 - 1310
  • [4] Approximate maximum-likelihood estimation using semidefinite programming
    Dahl, J
    Fleury, BH
    Vandenberghe, L
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL VI, PROCEEDINGS: SIGNAL PROCESSING THEORY AND METHODS, 2003, : 721 - 724
  • [5] The approximate maximum-likelihood certificate
    Goldenberg, Idan
    Burshtein, David
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 1278 - 1282
  • [6] The Approximate Maximum-Likelihood Certificate
    Goldenberg, Idan
    Burshtein, David
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 6049 - 6059
  • [7] Designed quadrature to approximate integrals in maximum simulated likelihood estimation
    Bansal, Prateek
    Keshavarzzadeh, Vahid
    Guevara, Angelo
    Li, Shanjun
    Daziano, Ricardo A.
    ECONOMETRICS JOURNAL, 2022, 25 (02): : 301 - 321
  • [8] MAXIMUM-LIKELIHOOD ESTIMATION OF STOCHASTIC FRONTIER PRODUCTION MODELS
    GREENE, WH
    JOURNAL OF ECONOMETRICS, 1982, 18 (02) : 285 - 289
  • [9] Maximum-likelihood estimation of multiscale stochastic model parameters
    Chou, KC
    PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1996, : 17 - 20
  • [10] ON MAXIMUM-LIKELIHOOD ESTIMATION OF STOCHASTIC FRONTIER PRODUCTION MODELS
    LEE, LF
    JOURNAL OF ECONOMETRICS, 1983, 23 (02) : 269 - 274