A prescriptive technique for V&V of simulation models when no real-life data are avaiable

被引:2
|
作者
Chwif, Leonardo [1 ]
Muniz Silva, Paulo Sergio [1 ]
Shimada, Lucio Mitio [2 ]
机构
[1] UNIFIEO, CEPI, R Narciso Sturlini 883, BR-06018903 Sao Paulo, Brazil
[2] Tecnol Informacao Sao Paulo Sul, PETROBRAS, BR-01311100 Sao Paulo, Brazil
来源
PROCEEDINGS OF THE 2006 WINTER SIMULATION CONFERENCE, VOLS 1-5 | 2006年
关键词
D O I
10.1109/WSC.2006.323175
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Verification and Validation (V&V) is a key process to guarantee that any model represents adequately a given system. Although no one can guarantee a 100% valid model, it is possible to increase model confidence by the utilization of V&V techniques. There are many V&V techniques which have a descriptive nature (they tell us what to do but not how to do it). There are also prescriptive techniques, that tell us how to do it, but in simulation practice they are underused. The main goal of this paper is based on Kleijnen (1999) procedure. It is to propose a prescriptive V&V technique that is simple enough for practical application and, because of its procedural nature, it could be easily built into any simulation software, thus enabling the automation of the V&V process. This approach was also applied to some test problems confirming its feasibility.
引用
收藏
页码:911 / +
页数:3
相关论文
共 50 条
  • [31] Pedestrian Movement: An Analysis of Transition Regime the Real-Life Experiment, a Comparison with a Simulation Data at an Example of the "SigmaEva" Software
    Kirik, Ekaterina
    Vitova, Tat'yana
    CELLULAR AUTOMATA (ACRI 2022), 2022, 13402 : 314 - 323
  • [32] Application of novel technologies and mechanistic data for risk assessment under the real-life risk simulation (RLRS) approach
    Hernandez, Antonio F.
    Docea, Anca O.
    Goumenou, Marina
    Sarigiannis, Dimosthenis
    Aschner, Michael
    Tsatsakis, Aristidis
    FOOD AND CHEMICAL TOXICOLOGY, 2020, 137
  • [33] Case study: Exposure to mixtures of chemicals in a human study and verification of aggregated exposure models with real-life data
    Dirven, H.
    Andreassen, M.
    Karrer, C.
    von Goetz, N.
    Sakhi, A. K.
    Husoy, T.
    TOXICOLOGY LETTERS, 2018, 295 : S2 - S2
  • [34] Anti-Phosphatidylserine, Anti-Prothrombin, and Anti-Annexin V Autoantibodies in Antiphospholipid Syndrome: A Real-Life Study
    Roselli, Daniele
    Bonifacio, Maria Addolorata
    Barbuti, Giovanna
    Rossiello, Maria Rosaria
    Ranieri, Prudenza
    Mariggio, Maria Addolorata
    DIAGNOSTICS, 2023, 13 (15)
  • [35] PETOOL v2.0: Parabolic Equation Toolbox with evaporation duct models and real environment data
    Ozgun, Ozlem
    Sahin, Volkan
    Erguden, Muhsin Eren
    Apaydin, Gokhan
    Yilmaz, Asim Egemen
    Kuzuoglu, Mustafa
    Sevgi, Levent
    COMPUTER PHYSICS COMMUNICATIONS, 2020, 256
  • [36] Electrification of Waste Collection Vehicles: Technoeconomic Analysis Based on an Energy Demand Simulation Using Real-Life Operational Data
    Schmid, Fabian
    Taube, Lina
    Rieck, Jenny
    Behrendt, Frank
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2021, 7 (02) : 604 - 615
  • [37] Encorafenib plus cetuximab with or without binimetinib in patients with BRAF V600E-mutated metastatic colorectal cancer: real-life data from an Italian multicenter experience
    Boccaccino, A.
    Borelli, B.
    Intini, R.
    Antista, M.
    Bensi, M.
    Rossini, D.
    Passardi, A.
    Tamberi, S.
    Giampieri, R.
    Antonuzzo, L.
    Noto, L.
    Roviello, G.
    Zichi, C.
    Salati, M.
    Puccini, A.
    Noto, C.
    Parisi, A.
    Rihawi, K.
    Persano, M.
    Crespi, V
    Libertini, M.
    Giordano, M.
    Moretto, R.
    Lonardi, S.
    Cremolini, C.
    ESMO OPEN, 2022, 7 (03)
  • [38] Real-life V2X Measurement Results for 5G NSA Performance on a High-speed Motorway
    Ficzere, Daniel
    Soos, Gabor
    Varga, Pal
    Szalay, Zsolt
    2021 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2021), 2021, : 836 - 841
  • [39] Real-life data-driven model predictive control for building energy systems comparing different machine learning models
    Stoffel, Phillip
    Berktold, Max
    Mueller, Dirk
    ENERGY AND BUILDINGS, 2024, 305
  • [40] Artificial intelligence-based prediction models for acute myeloid leukemia using real-life data: A DATAML registry study
    Didi, Ibrahim
    Alliot, Jean -Marc
    Dumas, Pierre -Yves
    Vergez, Francois
    Tavitian, Suzanne
    Largeaud, Laetitia
    Bidet, Audrey
    Rieu, Jean-Baptiste
    Luquet, Isabelle
    Lechevalier, Nicolas
    Delabesse, Eric
    Sarry, Audrey
    De Grande, Anne -Charlotte
    Berard, Emilie
    Pigneux, Arnaud
    Recher, Christian
    Simoncini, David
    Bertoli, Sarah
    LEUKEMIA RESEARCH, 2024, 136