Deformed Maxwell Algebras and their Realizations

被引:3
|
作者
Gomis, Joaquim [1 ]
Kamimura, Kiyoshi [2 ]
Lukierski, Jerzy [3 ]
机构
[1] Univ Barcelona, Dept Estructura & Constituents Mat, Diagonal 647, E-08028 Barcelona, Spain
[2] Toho Univ, Dept Phys, Chiba 2748510, Japan
[3] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland
来源
PLANCK SCALE | 2009年 / 1196卷
关键词
Maxwell algebra; deformation; AdS spaces; PHENOMENOLOGICAL LAGRANGIANS; NONLINEAR REALIZATIONS; LIE-ALGEBRAS; SUPERSYMMETRY; PARTICLES; BRANES;
D O I
10.1063/1.3284373
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study all possible deformations of the Maxwell algebra. In D = d + 1 not equal 3 dimensions there is only one-parameter deformation. The deformed algebra is isomorphic to so(d + 1, 1) circle plus so(d, 1) or to so(d, 2) circle plus so(d, 1) depending on the signs of the deformation parameter. We construct in the dS(AdS) space a model of massive particle interacting with Abelian vector field via non-local Lorentz force. In D=2+1 the deformations depend on two parameters b and k. We construct a phase diagram, with two parts of the (b, k) plane with so(3, 1) circle plus so(2, 1) and so(2, 2) circle plus so(2, 1) algebras separated by a critical curve along which the algebra is isomorphic to Iso(2, 1) circle plus so(2, 1). We introduce in D=2+1 the Volkov-Akulov type model for a Abelian Goldstone-Nambu vector field described by a non-linear action containing as its bilinear term the free Chern-Simons Lagrangean.
引用
收藏
页码:124 / +
页数:3
相关论文
共 50 条
  • [31] MINIMAL REALIZATIONS AND SPECTRUM GENERATING ALGEBRAS
    JOSEPH, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 36 (04) : 325 - 338
  • [32] REALIZATIONS OF LIE ALGEBRAS IN CLASSICAL MECHANICS
    MUKUNDA, N
    JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (05) : 1069 - &
  • [33] Loop realizations of quantum affine algebras
    Cautis, Sabin
    Licata, Anthony
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
  • [34] Realizations of 3-Lie algebras
    Bai, Ruipu
    Bai, Chengming
    Wang, Jinxiu
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (06)
  • [35] On deformed preprojective algebras
    Crawley-Boevey, William
    Kimura, Yuta
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (12)
  • [36] Multiboson realizations of Lie and quantum algebras
    Wang, XG
    Jin, Y
    Wang, Q
    Fu, HC
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2000, 34 (02) : 241 - 244
  • [37] Wakimoto realizations of current and exchange algebras
    Fehér, L
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1998, 48 (11) : 1325 - 1330
  • [38] Explicit field realizations of W algebras
    Wei, Shao-Wen
    Liu, Yu-Xiao
    Zhang, Li-Jie
    Ren, Ji-Rong
    PHYSICAL REVIEW D, 2009, 79 (12):
  • [39] Realizations of AF-algebras as graph algebras, Exel-Laca algebras, and ultragraph algebras
    Katsura, Takeshi
    Sims, Aidan
    Tomforde, Mark
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (05) : 1589 - 1620
  • [40] Skew group algebras of deformed preprojective algebras
    Hou, Bo
    Yang, Shilin
    JOURNAL OF ALGEBRA, 2011, 332 (01) : 209 - 228