Deformed Maxwell Algebras and their Realizations

被引:3
|
作者
Gomis, Joaquim [1 ]
Kamimura, Kiyoshi [2 ]
Lukierski, Jerzy [3 ]
机构
[1] Univ Barcelona, Dept Estructura & Constituents Mat, Diagonal 647, E-08028 Barcelona, Spain
[2] Toho Univ, Dept Phys, Chiba 2748510, Japan
[3] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland
来源
PLANCK SCALE | 2009年 / 1196卷
关键词
Maxwell algebra; deformation; AdS spaces; PHENOMENOLOGICAL LAGRANGIANS; NONLINEAR REALIZATIONS; LIE-ALGEBRAS; SUPERSYMMETRY; PARTICLES; BRANES;
D O I
10.1063/1.3284373
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study all possible deformations of the Maxwell algebra. In D = d + 1 not equal 3 dimensions there is only one-parameter deformation. The deformed algebra is isomorphic to so(d + 1, 1) circle plus so(d, 1) or to so(d, 2) circle plus so(d, 1) depending on the signs of the deformation parameter. We construct in the dS(AdS) space a model of massive particle interacting with Abelian vector field via non-local Lorentz force. In D=2+1 the deformations depend on two parameters b and k. We construct a phase diagram, with two parts of the (b, k) plane with so(3, 1) circle plus so(2, 1) and so(2, 2) circle plus so(2, 1) algebras separated by a critical curve along which the algebra is isomorphic to Iso(2, 1) circle plus so(2, 1). We introduce in D=2+1 the Volkov-Akulov type model for a Abelian Goldstone-Nambu vector field described by a non-linear action containing as its bilinear term the free Chern-Simons Lagrangean.
引用
收藏
页码:124 / +
页数:3
相关论文
共 50 条
  • [21] Comparison of realizations of Lie algebras
    Nesterenko, Maryna
    Posta, Severin
    XXV INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-25), 2018, 965
  • [22] REALIZATIONS OF Q-DEFORMED VIRASORO ALGEBRA
    SATO, H
    PROGRESS OF THEORETICAL PHYSICS, 1993, 89 (02): : 531 - 544
  • [23] Covariant realizations of kappa-deformed space
    S. Meljanac
    S. Krešić-Jurić
    M. Stojić
    The European Physical Journal C, 2007, 51
  • [24] On Holomorphic Realizations of Nilpotent Lie Algebras
    Akopyan, R. S.
    Loboda, A. V.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2019, 53 (02) : 124 - 128
  • [25] Covariant realizations of kappa-deformed space
    Meljanac, S.
    Kresic-Juric, S.
    Stojic, M.
    EUROPEAN PHYSICAL JOURNAL C, 2007, 51 (01): : 229 - 240
  • [26] Applications of deformed fermion realizations of sp(4)
    Sviratcheva, KD
    Draayer, JP
    Georgieva, AI
    PHYSICS OF PARTICLES AND NUCLEI, 2002, 33 : S84 - S90
  • [27] Matrix realizations of exceptional superconformal algebras
    Poletaeva, Elena
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (06) : 761 - 772
  • [28] Two kinds of Novikov algebras and their realizations
    Chen, Liangyun
    Niu, Yanjun
    Meng, Daoji
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (04) : 902 - 909
  • [29] COMPLEX ANALYTIC REALIZATIONS FOR QUANTUM ALGEBRAS
    DEAZCARRAGA, JA
    ELLINAS, D
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (03) : 1322 - 1333
  • [30] On Holomorphic Realizations of Nilpotent Lie Algebras
    R. S. Akopyan
    A. V. Loboda
    Functional Analysis and Its Applications, 2019, 53 : 124 - 128