Deformed Maxwell Algebras and their Realizations

被引:3
作者
Gomis, Joaquim [1 ]
Kamimura, Kiyoshi [2 ]
Lukierski, Jerzy [3 ]
机构
[1] Univ Barcelona, Dept Estructura & Constituents Mat, Diagonal 647, E-08028 Barcelona, Spain
[2] Toho Univ, Dept Phys, Chiba 2748510, Japan
[3] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland
来源
PLANCK SCALE | 2009年 / 1196卷
关键词
Maxwell algebra; deformation; AdS spaces; PHENOMENOLOGICAL LAGRANGIANS; NONLINEAR REALIZATIONS; LIE-ALGEBRAS; SUPERSYMMETRY; PARTICLES; BRANES;
D O I
10.1063/1.3284373
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study all possible deformations of the Maxwell algebra. In D = d + 1 not equal 3 dimensions there is only one-parameter deformation. The deformed algebra is isomorphic to so(d + 1, 1) circle plus so(d, 1) or to so(d, 2) circle plus so(d, 1) depending on the signs of the deformation parameter. We construct in the dS(AdS) space a model of massive particle interacting with Abelian vector field via non-local Lorentz force. In D=2+1 the deformations depend on two parameters b and k. We construct a phase diagram, with two parts of the (b, k) plane with so(3, 1) circle plus so(2, 1) and so(2, 2) circle plus so(2, 1) algebras separated by a critical curve along which the algebra is isomorphic to Iso(2, 1) circle plus so(2, 1). We introduce in D=2+1 the Volkov-Akulov type model for a Abelian Goldstone-Nambu vector field described by a non-linear action containing as its bilinear term the free Chern-Simons Lagrangean.
引用
收藏
页码:124 / +
页数:3
相关论文
共 28 条
[1]   GROUP-THEORETICAL ANALYSIS OF ELEMENTARY PARTICLES IN AN EXTERNAL ELECTROMAGNETIC FIELD .1. RELATIVISTIC PARTICLE IN A CONSTANT AND UNIFORM FIELD [J].
BACRY, H ;
COMBE, P ;
RICHARD, JL .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1970, 67 (02) :267-+
[2]  
BONANOS S, ARXIV08124140
[3]  
BONANOS S, MATH ENHANCEMENT
[4]  
BONANOS S, UNPUB
[5]   A note on the Chevalley-Eilenberg cohomology for the Galilei and Poincare algebras [J].
Bonanos, Sotirios ;
Gomis, Joaquim .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (14)
[6]   Newton-Hooke algebras, nonrelativistic branes, and generalized pp-wave metrics [J].
Brugués, J ;
Gomis, J ;
Kamimura, K .
PHYSICAL REVIEW D, 2006, 73 (08)
[7]   Non-relativistic strings and branes as non-linear realizations of Galilei groups [J].
Brugues, J ;
Curtright, T ;
Gomis, J ;
Mezincescu, L .
PHYSICS LETTERS B, 2004, 594 (1-2) :227-233
[8]   STRUCTURE OF PHENOMENOLOGICAL LAGRANGIANS .2. [J].
CALLAN, CG ;
COLEMAN, S ;
WESS, J ;
ZUMINO, B .
PHYSICAL REVIEW, 1969, 177 (5P1) :2247-&
[9]   STRUCTURE OF PHENOMENOLOGICAL LAGRANGIANS .I. [J].
COLEMAN, S ;
WESS, J ;
ZUMINO, B .
PHYSICAL REVIEW, 1969, 177 (5P1) :2239-&
[10]  
DAURIA R, 1982, NUCL PHYS B, V206, P496