THE NICHE GRAPHS OF INTERVAL ORDERS

被引:2
作者
Park, Jeongmi [1 ]
Sano, Yoshio [2 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
[2] Univ Tsukuba, Fac Engn Informat & Sci, Div Informat Engn, Tsukuba, Ibaraki 3058573, Japan
关键词
competition graph; niche graph; semiorder; interval order;
D O I
10.7151/dmgt.1741
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The niche graph of a digraph D is the (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if N-D(+)(x) boolean AND N-D(+)(y) not equal theta or N-D(-) (x) boolean AND N-D(-)(y) not equal theta, where N-D(+)(x) (resp. N-D(+)(x)) is the set of out-neighbors (resp. in-neighbors) of x in D. A digraph D = (V, A) is called a semiorder (or a unit interval order) if there exist a real-valued function f : V -> R on the set V and a positive real number delta is an element of R such that (x, y) E A if and only if f (x) > f (y) + delta digraph D = (V, A) is called an interval order if there exists an assignment J of a closed real interval J(x) c N to each vertex x E V such that (x, y) is an element of A if and only if min J(x) > max J(y).
引用
收藏
页码:353 / 359
页数:7
相关论文
共 50 条
  • [21] Towards fuzzy interval orders
    Diaz, S.
    Montes, S.
    De Baets, B.
    COMPUTATIONAL INTELLIGENCE IN DECISION AND CONTROL, 2008, 1 : 211 - 216
  • [22] Critically prime interval orders
    Zaguia, Imed
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5727 - 5734
  • [23] The niche category of sparse graphs
    Bowser, S
    Cable, C
    ARS COMBINATORIA, 2003, 66 : 179 - 192
  • [24] The niche category of dense graphs
    Bowser, S
    Cable, C
    ARS COMBINATORIA, 2001, 59 : 289 - 297
  • [25] A Genesis of Interval Orders and Semiorders: Transitive NaP-preferences
    Giarlotta, Alfio
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2014, 31 (02): : 239 - 258
  • [26] A Genesis of Interval Orders and Semiorders: Transitive NaP-preferences
    Alfio Giarlotta
    Order, 2014, 31 : 239 - 258
  • [27] TACKLING THE JUMP NUMBER OF INTERVAL ORDERS
    MITAS, J
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1991, 8 (02): : 115 - 132
  • [28] An alternative definition for fuzzy interval orders
    Bufardi, A
    FUZZY SETS AND SYSTEMS, 2003, 133 (02) : 249 - 259
  • [29] On CCE graphs of doubly partial orders
    Kim, Seog-Jin
    Kim, Suh-Ryung
    Rho, Yoomi
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (08) : 971 - 978
  • [30] THE PHYLOGENY GRAPHS OF DOUBLY PARTIAL ORDERS
    Park, Boram
    Sano, Yoshio
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (04) : 657 - 664