THE NICHE GRAPHS OF INTERVAL ORDERS

被引:2
|
作者
Park, Jeongmi [1 ]
Sano, Yoshio [2 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
[2] Univ Tsukuba, Fac Engn Informat & Sci, Div Informat Engn, Tsukuba, Ibaraki 3058573, Japan
关键词
competition graph; niche graph; semiorder; interval order;
D O I
10.7151/dmgt.1741
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The niche graph of a digraph D is the (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if N-D(+)(x) boolean AND N-D(+)(y) not equal theta or N-D(-) (x) boolean AND N-D(-)(y) not equal theta, where N-D(+)(x) (resp. N-D(+)(x)) is the set of out-neighbors (resp. in-neighbors) of x in D. A digraph D = (V, A) is called a semiorder (or a unit interval order) if there exist a real-valued function f : V -> R on the set V and a positive real number delta is an element of R such that (x, y) E A if and only if f (x) > f (y) + delta digraph D = (V, A) is called an interval order if there exists an assignment J of a closed real interval J(x) c N to each vertex x E V such that (x, y) is an element of A if and only if min J(x) > max J(y).
引用
收藏
页码:353 / 359
页数:7
相关论文
共 50 条
  • [1] Interval orders with two interval lengths
    Boyadzhiyska, Simona
    Isaak, Garth
    Trenk, Ann N.
    DISCRETE APPLIED MATHEMATICS, 2019, 267 : 52 - 63
  • [2] Homothetic interval orders
    Lemaire, Bertrand
    Le Menestrel, Marc
    DISCRETE MATHEMATICS, 2006, 306 (15) : 1669 - 1683
  • [3] Tangent circle graphs and 'orders'
    Abbas, Moncef
    Pirlot, Marc
    Vincke, Philippe
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (04) : 429 - 441
  • [4] The niche graphs of bipartite tournaments
    Eoh, Soogang
    Choi, Jihoon
    Kim, Suh-Ryung
    Oh, Miok
    DISCRETE APPLIED MATHEMATICS, 2020, 282 : 86 - 95
  • [5] THE NICHE GRAPHS OF MULTIPARTITE TOURNAMENTS
    Eoh, Soogang
    Choi, Myungho
    Kim, Suh-ryung
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (04) : 1123 - 1146
  • [6] Dimension of Restricted Classes of Interval Orders
    Keller, Mitchel T.
    Trenk, Ann N.
    Young, Stephen J.
    GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [7] Interval orders, semiorders and ordered groups
    Pouzet, Maurice
    Zaguia, Imed
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2019, 89 : 51 - 66
  • [8] Dimension of Restricted Classes of Interval Orders
    Mitchel T. Keller
    Ann N. Trenk
    Stephen J. Young
    Graphs and Combinatorics, 2022, 38
  • [9] Shellability of interval orders
    Billera, LJ
    Myers, AN
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1998, 15 (02): : 113 - 117
  • [10] Interval orders and dimension
    Kierstead, HA
    Trotter, WT
    DISCRETE MATHEMATICS, 2000, 213 (1-3) : 179 - 188