Wiener's problem for positive definite functions

被引:5
作者
Gorbachev, D. V. [1 ]
Tikhonov, S. Yu. [2 ,3 ,4 ]
机构
[1] Tula State Univ, Dept Appl Math & Comp Sci, Tula 300012, Russia
[2] Ctr Recerca Matemat, Campus Bellaterra,Edifici C, Barcelona 08193, Spain
[3] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain
[4] Univ Autonoma Barcelona, E-08193 Barcelona, Spain
关键词
Positive definite function; Wiener's problem; Hlawka's inequality; Sharp constant; Linear programming bound problem; SPHERE PACKING PROBLEM; PERIODIC-FUNCTIONS; EXTREMAL PROBLEM; TURAN; FAILURE; SERIES; BOUNDS;
D O I
10.1007/s00209-017-1978-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the sharp constant in Wiener's inequality for positive definite functions Tn | f | 2 dx = Wn( D)| D|- 1 D | f | 2 dx, D. Tn Wiener proved that , . Hlawka showed that , where D is an origin-symmetric convex body. We sharpen Hlawka's estimates for D being the ball and the cube . In particular, we prove that . We also obtain a lower bound of . Moreover, for a cube with we obtain that . Our proofs are based on the interrelation between Wiener's problem and the problems of Turan and Delsarte.
引用
收藏
页码:859 / 874
页数:16
相关论文
共 41 条
[1]  
[Anonymous], 1991, Collected Papers, vol.2, Lectures on Sieves
[2]  
[Anonymous], 2002, TRIGONOMETRIC SERIES
[3]  
Arestov A. A., 2002, E J APPROX, V8, P381
[4]  
Arestov V., 2003, East J. Approx, V9, P31
[5]  
Arestov V.V., 2001, Proc. Steklov Inst. Math. (Approximation Theory. Asymptotical Expansions, V7, P20
[6]   Wiener's Positive Fourier Coefficients Theorem in Variants of Lp Spaces [J].
Ash, J. M. ;
Tikhonov, S. ;
Tung, J. .
MICHIGAN MATHEMATICAL JOURNAL, 2010, 59 (01) :143-151
[7]  
Babenko AG, 2015, T I MAT MEKH URO RAN, V21, P54
[8]   A FOURIER ANALYTIC PROOF OF THE BLASCHKE-SANTALO INEQUALITY [J].
Bianchi, Gabriele ;
Kelly, Michael .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (11) :4901-4912
[9]   Failure of Wiener's property for positive definite periodic functions [J].
Bonami, Aline ;
Revesz, Szilard Gy. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (1-2) :39-44
[10]   New upper bounds on sphere packings I [J].
Cohn, H ;
Elkies, N .
ANNALS OF MATHEMATICS, 2003, 157 (02) :689-714