Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells

被引:204
|
作者
Correa-Baena, Juan-Pablo [1 ,7 ]
Tress, Wolfgang [2 ]
Domanski, Konrad [2 ]
Anaraki, Elham Halvani [1 ,3 ]
Turren-Cruz, Silver-Hamill [1 ,6 ]
Roose, Bart [4 ]
Boix, Pablo P. [5 ]
Gratzel, Michael
Saliba, Michael [2 ]
Abate, Antonio [2 ,4 ]
Hagfeldt, Anders [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland
[3] Isfahan Univ Technol, Dept Mat Engn, Esfahan 8415683111, Iran
[4] Adolphe Merkle Inst, Chemin Verdiers 4, CH-1700 Fribourg, Switzerland
[5] Nanyang Technol Univ ERI N, Energy Res Inst, 50 Nanyang Dr, Singapore 637553, Singapore
[6] Benemerita Univ Autonoma Puebla, Puebla 7200, Mexico
[7] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
欧盟地平线“2020”; 瑞士国家科学基金会;
关键词
SIZE; SEMICONDUCTORS; PHOTOVOLTAICS; PERFORMANCE; CATIONS; LENGTHS; IMPACT;
D O I
10.1039/c7ee00421d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With close to 100% internal quantum efficiency over the absorption spectrum, photocurrents in perovskite solar cells (PSCs) are at their practical limits. It is therefore imperative to improve open-circuit voltages (VOC) in order to go beyond the current 100 mV loss-in-potential. Identifying and suppressing recombination bottlenecks in the device stack will ultimately drive the voltages up. In this work, we investigate in depth the recombination at the different interfaces in a PSC, including the charge selective contacts and the effect of grain boundaries. We find that the density of grain boundaries and the use of tunneling layers in a highly efficient PSC do not modify the recombination dynamics at 1 sun illumination. Instead, the recombination is strongly dominated by the dopants in the hole transporting material (HTM), spiro-OMeTAD and PTAA. The reduction of doping concentrations for spiro-OMeTAD yielded VOC's as high as 1.23 V in contrast to PTAA, which systematically showed slightly lower voltages. This work shows that a further suppression of non-radiative recombination is possible for an all-low-temperature PSC, to yield a very low loss-in-potential similar to GaAs, and thus paving the way towards higher than 22% efficiencies.
引用
收藏
页码:1207 / 1212
页数:6
相关论文
共 50 条
  • [41] Heterogeneity of Light-Induced Open-Circuit Voltage Loss in Perovskite/Si Tandem Solar Cells
    Tao, Zhi-Wei
    Lu, Teng
    Gao, Xiang
    Rothmann, Mathias Uller
    Jiang, Yang
    Qiang, Zi-Yue
    Du, Hong-Qiang
    Guo, Chang
    Yang, Long-Hui
    Wang, Cai-Xia
    Liu, Yun
    Cheng, Yi-Bing
    Li, Wei
    ACS ENERGY LETTERS, 2024, 9 (04) : 1455 - 1465
  • [42] End group engineering enabling organic solar cells with high open-circuit voltage
    Zou, Yingping
    Sun, Chaoyuan
    Xu, Xiang
    Zhou, Zhixiang
    Luo, Xiaoyan
    Lu, Xinhui
    Hu, Yunbin
    Yuan, Jun
    Xia, Xinxin
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (37)
  • [43] Controlling the Band Gap to Improve Open-Circuit Voltage in Metal Chalcogenide based Perovskite Solar Cells
    Yuan, Meng
    Zhang, Xiaoman
    Kong, Jun
    Zhou, Wenhui
    Zhou, Zhengji
    Tian, Qingwen
    Meng, Yuena
    Wu, Sixin
    Kou, Dongxing
    ELECTROCHIMICA ACTA, 2016, 215 : 374 - 379
  • [44] A review: strategies for reducing the open-circuit voltage loss of wide-bandgap perovskite solar cells
    Chen, Lu-Yao
    Sun, Qi
    Xie, Yue-Min
    Fung, Man-Keung
    CHEMICAL COMMUNICATIONS, 2025, 61 (06) : 1063 - 1086
  • [45] A Universal Double-Side Passivation for High Open-Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate)
    Peng, Jun
    Khan, Jafar I.
    Liu, Wenzhu
    Ugur, Esma
    Duong, The
    Wu, Yiliang
    Shen, Heping
    Wang, Kai
    Dang, Hoang
    Aydin, Erkan
    Yang, Xinbo
    Wan, Yimao
    Weber, Klaus J.
    Catchpole, Kylie R.
    Laquai, Frederic
    De Wolf, Stefaan
    White, Thomas P.
    ADVANCED ENERGY MATERIALS, 2018, 8 (30)
  • [46] The CsPbI2Br Perovskite Solar Cell with High Open-Circuit Voltage by Crystallization Optimization
    Liu, Shanjing
    Xu, Xinyu
    Xing, Chuwu
    Ge, Guanming
    Wang, Duofa
    Zhang, Tianjin
    ENERGY TECHNOLOGY, 2022, 10 (08)
  • [47] Planar Perovskite Solar Cells with High Open-Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant
    Saygili, Yasemin
    Turren-Cruz, Silver-Hamill
    Olthof, Selina
    Saes, Bartholomeus Wilhelmus Henricus
    Pehlivan, Ilknur Bayrak
    Saliba, Michael
    Meerholz, Klaus
    Edvinsson, Tomas
    Zakeeruddin, Shaik M.
    Graetzel, Michael
    Correa-Baena, Juan-Pablo
    Hagfeldt, Anders
    Freitag, Marina
    Tress, Wolfgang
    CHEMPHYSCHEM, 2018, 19 (11) : 1363 - 1370
  • [48] Voltage-Enhancement Mechanisms of an Organic Dye in High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells
    Jang, Song-Rim
    Zhu, Kai
    Ko, Min Jae
    Kim, Kyungkon
    Kim, Chulhee
    Park, Nam-Gyu
    Frank, Arthur J.
    ACS NANO, 2011, 5 (10) : 8267 - 8274
  • [49] Growth of 2D passivation layer in FAPbI3 perovskite solar cells for high open-circuit voltage
    Wang, Jin
    Liu, Le
    Chen, Siqi
    Ran, Guangliu
    Zhang, Wenkai
    Zhao, Min
    Zhao, Chengjie
    Lu, Fushen
    Jiu, Tonggang
    Li, Yuliang
    NANO TODAY, 2022, 42
  • [50] Critical Interfaces in Organic Solar Cells and Their Influence on the Open-Circuit Voltage
    Potscavage, William J., Jr.
    Sharma, Asha
    Kippelen, Bernard
    ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) : 1758 - 1767