Experimental Estimation of Entanglement at the Quantum Limit

被引:59
作者
Brida, Giorgio [1 ]
Degiovanni, Ivo Pietro [1 ]
Florio, Angela [1 ,2 ]
Genovese, Marco [1 ]
Giorda, Paolo [3 ]
Meda, Alice [1 ]
Paris, Matteo G. A. [4 ,5 ]
Shurupov, Alexander [1 ,6 ,7 ]
机构
[1] INRIM, I-10135 Turin, Italy
[2] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy
[3] ISI Fdn, I-10133 Turin, Italy
[4] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[5] UdR Milano, CNISM, I-20133 Milan, Italy
[6] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
[7] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119992, Russia
关键词
PARAMETRIC-DOWN-CONVERSION; SPECTRAL ENTANGLEMENT; BELL INEQUALITIES; VERIFICATION; SEPARABILITY; GEOMETRY;
D O I
10.1103/PhysRevLett.104.100501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics.
引用
收藏
页数:4
相关论文
共 38 条
[1]   Environment-induced sudden death of entanglement [J].
Almeida, M. P. ;
de Melo, F. ;
Hor-Meyll, M. ;
Salles, A. ;
Walborn, S. P. ;
Ribeiro, P. H. Souto ;
Davidovich, L. .
SCIENCE, 2007, 316 (5824) :579-582
[2]   When are correlations quantum? verification and quantification of entanglement by simple measurements [J].
Audenaert, K. M. R. ;
Plenio, M. B. .
NEW JOURNAL OF PHYSICS, 2006, 8
[3]   Towards measurable bounds on entanglement measures [J].
Augusiak, Remigiusz ;
Lewenstein, Maciej .
QUANTUM INFORMATION PROCESSING, 2009, 8 (06) :493-521
[4]   Maximum-likelihood estimation of the density matrix [J].
Banaszek, K ;
D'Ariano, GM ;
Paris, MGA ;
Sacchi, MF .
PHYSICAL REVIEW A, 2000, 61 (01) :4
[5]  
Bengtsson I., 2017, GEOMETRY QUANTUM STA, DOI DOI 10.1017/9781139207010
[6]   Statistical reconstruction of qutrits [J].
Bogdanov, YI ;
Chekhova, MV ;
Krivitsky, LA ;
Kulik, SP ;
Penin, AN ;
Zhukov, AA ;
Kwek, LC ;
Oh, CH ;
Tey, MK .
PHYSICAL REVIEW A, 2004, 70 (04) :042303-1
[7]   Experimental detection of multipartite entanglement using witness operators -: art. no. 087902 [J].
Bourennane, M ;
Eibl, M ;
Kurtsiefer, C ;
Gaertner, S ;
Weinfurter, H ;
Gühne, O ;
Hyllus, P ;
Bruss, D ;
Lewenstein, M ;
Sanpera, A .
PHYSICAL REVIEW LETTERS, 2004, 92 (08)
[8]   Generalized uncertainty relations: Theory, examples, and Lorentz invariance [J].
Braunstein, SL ;
Caves, CM ;
Milburn, GJ .
ANNALS OF PHYSICS, 1996, 247 (01) :135-173
[9]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[10]   Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime [J].
Brida, G. ;
Caricato, V. ;
Fedorov, M. V. ;
Genovese, M. ;
Gramegna, M. ;
Kulik, S. P. .
EPL, 2009, 87 (06)