Restricted k-color partitions

被引:11
作者
Keith, William J. [1 ]
机构
[1] Michigan Tech Univ Houghton, Houghton, MI 49931 USA
关键词
Colored partitions; Overpartitions; Multipartitions; CONGRUENCES; PROOF;
D O I
10.1007/s11139-015-9704-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize overpartitions to (k, j)-colored partitions: k-colored partitions in which each part size may have at most j colors. We find numerous congruences and other symmetries. We use a wide array of tools to prove our theorems: generating function dissections, modular forms, bijections, and other combinatorial maps. In the process of proving certain congruences, we find results of independent interest on the number of partitions with exactly 2 sizes of part in several arithmetic progressions. We find connections to divisor sums, the Han/Nekrasov-Okounkov hook length formula and a possible approach to finitization, and other topics, suggesting that a rich mine of results is available. We pose several immediate questions and conjectures.
引用
收藏
页码:71 / 92
页数:22
相关论文
共 25 条
[1]  
Andrews G., 1999, Ann. Comb, V3, P115
[2]   Singular overpartitions [J].
Andrews, George E. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (05) :1523-1533
[3]  
Andrews GE, 2008, DEV MATH, V17, P1, DOI 10.1007/978-0-387-78510-3_1
[4]   Partition-theoretic interpretations of certain modular equations of schroter, russell, and ramanujan [J].
Berndt, Bruce C. .
ANNALS OF COMBINATORICS, 2007, 11 (02) :115-125
[5]   Dyson's Rank, Overpartitions, and Weak Maass Forms [J].
Bringmann, Kathrin ;
Lovejoy, Jeremy .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
[6]   Arithmetic properties of Andrews' singular overpartitions [J].
Chen, Shi-Chao ;
Hirschhorn, Michael D. ;
Sellers, James A. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (05) :1463-1476
[7]   Ramanujan-type congruences for overpartitions modulo 16 [J].
Chen, William Y. C. ;
Hou, Qing-Hu ;
Sun, Lisa H. ;
Zhang, Li .
RAMANUJAN JOURNAL, 2016, 40 (02) :311-322
[8]   Ramanujan-type congruences for overpartitions modulo 5 [J].
Chen, William Y. C. ;
Sun, Lisa H. ;
Wang, Rong-Hua ;
Zhang, Li .
JOURNAL OF NUMBER THEORY, 2015, 148 :62-72
[9]   Proof of a conjecture of Hirschhorn and Sellers on overpartitions [J].
Chen, William Y. C. ;
Xia, Ernest X. W. .
ACTA ARITHMETICA, 2014, 163 (01) :59-69
[10]   Overpartitions [J].
Corteel, S ;
Lovejoy, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) :1623-1635