Flux of superconducting vortices through a domain

被引:4
作者
Antontsev, S. N.
Chemetov, N. V.
机构
[1] Univ Beira Interior, Dept Matemat, P-6201001 Covilha, Portugal
[2] Univ Lisbon, CMAF, P-1649003 Lisbon, Portugal
关键词
mean-field model; superconducting vortices; flux; solvability;
D O I
10.1137/060655146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article addresses the mathematical study of a mean-field model of superconducting vortices in a II-type superconductor, previously introduced in [S. J. Chapman, SIAM J. Appl. Math., 55 (1995), pp. 1259-1279]. We investigate a hyperbolic-elliptic type system of PDEs in a given domain. Motivated by physical experiments, we consider nonzero and nonconstant boundary conditions, which describe a flux of superconducting vortices through the domain. We prove the existence of the regular solutions of a parabolic-elliptic approximated system and establish a uniform L-infinity-bound for the vorticity and the convergence to the initial system. Finally, we analyze the regularity of weak solutions.
引用
收藏
页码:263 / 280
页数:18
相关论文
共 20 条
[1]  
AUBIN JP, 1963, CR HEBD ACAD SCI, V256, P5042
[2]  
BRIGGS AJ, 2001, SER ADV MATH APPL SC, V59, P21
[3]  
Chapman S. J., 1996, EUR J APPL MATH, V7, P97, DOI 10.1017/S0956792500002242
[4]   A MEAN-FIELD MODEL OF SUPERCONDUCTING VORTICES IN 3 DIMENSIONS [J].
CHAPMAN, SJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (05) :1259-1274
[5]   MACROSCOPIC MODELS FOR SUPERCONDUCTIVITY [J].
CHAPMAN, SJ ;
HOWISON, SD ;
OCKENDON, JR .
SIAM REVIEW, 1992, 34 (04) :529-560
[6]   A hierarchy of models for type-II superconductors [J].
Chapman, SJ .
SIAM REVIEW, 2000, 42 (04) :555-598
[7]   SHOOTING METHOD FOR VORTEX SOLUTIONS OF A COMPLEX-VALUED GINZBURG-LANDAU EQUATION [J].
CHEN, XF ;
ELLIOTT, CM ;
QI, T .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :1075-1088
[8]  
DiBenedetto E., 1995, PARTIAL DIFFERENTIAL, DOI [10.1007/978-1-4899-2840-5, DOI 10.1007/978-1-4899-2840-5]
[9]   Numerical analysis of a mean field model of superconducting vortices [J].
Elliott, CM ;
Styles, V .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (01) :1-51
[10]   Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity [J].
Elliott, CM ;
Schätzle, E ;
Stoth, BEE .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 145 (02) :99-127