Highly Efficient Polarized GeS/MoSe2 van der Waals Heterostructure for Water Splitting from Ultraviolet to Near-Infrared Light

被引:12
作者
Gu, Di [1 ,2 ,3 ]
Tao, Xiaoma [1 ]
Chen, Hongmei [1 ]
Zhu, Weiling [3 ]
Ouyang, Yifang [1 ]
Du, Yong [4 ]
Peng, Qing [5 ]
机构
[1] Guangxi Univ, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[2] Guangxi Univ, Sch Chem & Chem Engn, Nanning 530004, Peoples R China
[3] Guangdong Univ Petrochem Technol, Sch Sci, Dept Phys, Maoming 525000, Guangdong, Peoples R China
[4] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[5] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2020年 / 14卷 / 01期
基金
中国国家自然科学基金;
关键词
GeS; MoSe2; polarized materials; van der Waals heterostructures; water splitting; HYDROGEN-PRODUCTION; PHOTOCATALYTIC DECOMPOSITION; ELECTRONIC-STRUCTURES; OPTICAL-ABSORPTION; H-2; MONOLAYER; SPECTRUM; DICHALCOGENIDES; NANOSHEETS; TIO2;
D O I
10.1002/pssr.201900582
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A high-efficiency photocatalyst is critical for water splitting by solar light. Herein, via first principles calculations, the 2D polarized GeS/MoSe2 van der Waals (vdW) heterostructure is proposed as an efficient water redox photocatalyst. The performance of GeS/MoSe2 heterostructure is better than isolated materials, as the properties of GeS monolayer and MoSe2 monolayer are complementary by forming vdW heterostructure. GeS/MoSe2 heterostructure possesses suitable bandgap, dipole-induced internal electric field, and excellent solar absorption performance. The band alignments of GeS/MoSe2 heterostructure are suitable compared with the redox potential of water. It is feasible to tune the optoelectronic properties and enhance photocatalytic activity of GeS/MoSe2 heterostructure via strain engineering. Biaxial compressive strain range from -2% to -3% induces the direct bandgap characteristic in GeS/MoSe2 heterostructure. The results suggest that 2D polarized GeS/MoSe2 vdW heterostructure is a potential novel high-efficiency photocatalyst for water splitting under a wide range of spectra from ultraviolet to near infrared.
引用
收藏
页数:9
相关论文
共 71 条
[1]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[2]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain [J].
Chang, Chung-Huai ;
Fan, Xiaofeng ;
Lin, Shi-Hsin ;
Kuo, Jer-Lai .
PHYSICAL REVIEW B, 2013, 88 (19)
[5]   THE ROLE OF METAL-ION DOPANTS IN QUANTUM-SIZED TIO2 - CORRELATION BETWEEN PHOTOREACTIVITY AND CHARGE-CARRIER RECOMBINATION DYNAMICS [J].
CHOI, WY ;
TERMIN, A ;
HOFFMANN, MR .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (51) :13669-13679
[6]   Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2 [J].
Daneshvar, N ;
Salari, D ;
Khataee, AR .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2004, 162 (2-3) :317-322
[7]   Black Phosphorus-Monolayer MoS2 van der Waals Heterojunction p-n Diode [J].
Deng, Yexin ;
Luo, Zhe ;
Conrad, Nathan J. ;
Liu, Han ;
Gong, Yongji ;
Najmaei, Sina ;
Ajayan, Pulickel M. ;
Lou, Jun ;
Xu, Xianfan ;
Ye, Peide D. .
ACS NANO, 2014, 8 (08) :8292-8299
[8]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229
[9]   First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers [J].
Ding, Yi ;
Wang, Yanli ;
Ni, Jun ;
Shi, Lin ;
Shi, Siqi ;
Tang, Weihua .
PHYSICA B-CONDENSED MATTER, 2011, 406 (11) :2254-2260
[10]   PHOTOCATALYTIC DECOMPOSITION OF LIQUID WATER ON A NIO SRTIO3 CATALYST [J].
DOMEN, K ;
NAITO, S ;
ONISHI, T ;
TAMARU, K .
CHEMICAL PHYSICS LETTERS, 1982, 92 (04) :433-434