A 4k2 Kernel for Feedback Vertex Set

被引:110
作者
Thomasse, Stephan [1 ]
机构
[1] LIRMM, F-34392 Montpellier, France
关键词
Algorithms; Kernelization; feedback vertex set; matching; fixed parameter tractability; ALGORITHMS; PATHS;
D O I
10.1145/1721837.1721848
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that given an undirected graph G on n vertices and an integer k, one can compute, in polynomial time in n, a graph G' with at most 4k(2) vertices and an integer k' such that G has a feedback vertex set of size at most k iff G' has a feedback vertex set of size at most k'. This result improves a previous O(k(11)) kernel of Burrage et al., and a more recent cubic kernel of Bodlaender. This problem was communicated by Fellows.
引用
收藏
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 1992, C NUMERANTIUM
[2]   Randomized algorithms for the loop cutset problem [J].
Becker, A ;
Bar-Yehuda, R ;
Geiger, D .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2000, 12 :219-234
[3]  
Bodlaender H. L., 1994, International Journal of Foundations of Computer Science, V5, P59, DOI 10.1142/S0129054194000049
[4]  
Bodlaender HL, 2008, LECT NOTES COMPUT SC, V5018, P160, DOI 10.1007/978-3-540-79723-4_16
[5]  
Bodlaender HL, 2007, LECT NOTES COMPUT SC, V4393, P320
[6]  
BODLAENDER HL, 2006, P INT WORKSH PAR EX
[7]  
Burrage K, 2006, LECT NOTES COMPUT SC, V4169, P192
[8]  
Chen J, 2008, ACM S THEORY COMPUT, P177
[9]  
Dehne F, 2005, LECT NOTES COMPUT SC, V3595, P859, DOI 10.1007/11533719_87
[10]  
Downey R. G., 1999, MG COMP SCI