Approximately counting Hamilton paths and cycles in dense graphs

被引:20
作者
Dyer, M [1 ]
Frieze, A
Jerrum, M
机构
[1] Univ Leeds, Sch Comp Studies, Leeds LS2 9JT, W Yorkshire, England
[2] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
[3] Univ Edinburgh, Dept Comp Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
[4] NEC Res Inst, Princeton, NJ 08540 USA
关键词
Hamilton cycles; fpras; dense;
D O I
10.1137/S009753979426112X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe fully polynomial randomized approximation schemes for the problems of determining the number of Hamilton paths and cycles in an n-vertex graph with minimum degree (1/2 + alpha)n, for any fixed alpha > 0. We show that the exact counting problems are #P-complete. We also describe fully polynomial randomized approximation schemes for counting paths and cycles of all sizes in such graphs.
引用
收藏
页码:1262 / 1272
页数:11
相关论文
共 22 条
[1]  
Annan JD., 1994, Comb. Probab. Comput, V3, P273, DOI DOI 10.1017/S0963548300001188
[2]  
Bollobas B., 1978, EXTREMAL GRAPH THEOR
[3]   COUNTING LINEAR EXTENSIONS [J].
BRIGHTWELL, G ;
WINKLER, P .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1991, 8 (03) :225-242
[4]  
Broder Andrei Z., 1988, P 20 ANN ACM S THEOR, P551
[5]  
Broder AZ, 1986, P 18 ANN ACM S THEOR, P50, DOI DOI 10.1145/12130.12136
[6]  
Dirac G. A., 1952, Proc. Lond. Math. Soc, V2, P69, DOI DOI 10.1112/PLMS/S3-2.1.69
[7]   A RANDOM POLYNOMIAL-TIME ALGORITHM FOR APPROXIMATING THE VOLUME OF CONVEX-BODIES [J].
DYER, M ;
FRIEZE, A ;
KANNAN, R .
JOURNAL OF THE ACM, 1991, 38 (01) :1-17
[8]   ON THE COMPLEXITY OF COMPUTING THE VOLUME OF A POLYHEDRON [J].
DYER, ME ;
FRIEZE, AM .
SIAM JOURNAL ON COMPUTING, 1988, 17 (05) :967-974
[9]   COUNTING THE NUMBER OF HAMILTON CYCLES IN RANDOM DIGRAPHS [J].
FRIEZE, A ;
SUEN, S .
RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (03) :235-241
[10]  
FRIEZE AM, 1994, ECSLFCS94313 U ED DE