Evolution of eigenvalues of a geometric operator under Ricci flow on a Riemannian manifold

被引:2
|
作者
Bracken, Paul [1 ]
机构
[1] Univ Texas, Dept Math, Edinburg, TX 78540 USA
关键词
Manifold; Operators; Laplacian; Eigenvalues; Ricci flow; Riemannian;
D O I
10.1016/j.jmaa.2022.125990
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The behavior of the eigenvalues of a geometric operator closely related to the Laplacian under Ricci flow is investigated. These depend on a coupling parameter in the operator as well as an evolution parameter which gives a flow on a compact manifold of finite dimension. The main objective is to study the monotonicity properties of the eigenvalues. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条