Direct comparison of CFD-DEM simulation and experimental measurement of Geldart A particles in a micro-fluidized bed

被引:15
|
作者
Li, Shijiao [1 ,2 ]
Zhao, Peng [2 ,3 ]
Xu, Ji [2 ,3 ]
Zhang, Li [1 ]
Wang, Junwu [2 ,3 ,4 ]
机构
[1] Shengyang Univ Chem Technol, Sch Chem Engn, Shenyang 110142, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, POB 353, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Chem Engn, POB 353, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Innovat Acad Green Mfg, POB 353, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Fluidization; Multiphase flow; CFD-DEM method; Gas-solid flow; Fine particle; Micro-fluidized bed; GAS-SOLID FLOW; GROUP-A PARTICLES; BUBBLING FLUIDIZATION; COHESIVE FORCES; BEHAVIOR; MODEL; 2-FLUID; VELOCITY; REGIMES; PREDICT;
D O I
10.1016/j.ces.2021.116725
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Although CFD-DEM simulation of Geldart B and D particles has been experimentally validated extensively, its experimental validation for simulating the hydrodynamics of Geldart A particles has been seldom reported, due to the fact that even the particle number in a laboratory fluidized bed is too much to be tracked individually. In this study, one-to-one comparison between experimental and CFD-DEM study of a miniaturized gas-solid fluidized bed (micro-fluidized bed) containing FCC particles was performed. It was shown that the bed expansion characteristics in bubbling fluidization regime, the mean voidage of emulsion phase as well as the bed collapse process can be predicted accurately by CFD-DEM method. The results not only provide experimental validation of CFD-DEM method for studying the heterogeneous dynamics of Geldart A particles in bubbling fluidized beds, but also prove that CFD-DEM method is an ideal and powerful tool for exploring the behavior of micro-fluidized beds. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] CFD-DEM study of effect of bed thickness for bubbling fluidized beds
    Li, Tingwen
    Gopalakrishnan, Pradeep
    Garg, Rahul
    Shahnam, Mehrdad
    PARTICUOLOGY, 2012, 10 (05) : 532 - 541
  • [22] CFD-DEM Simulation of a Coating Process in a Fluidized Bed Rotor Granulator
    Grohn, Philipp
    Lawall, Marius
    Oesau, Tobias
    Heinrich, Stefan
    Antonyuk, Sergiy
    PROCESSES, 2020, 8 (09)
  • [23] CFD-DEM simulations of a fluidized bed crystallizer
    Kerst, Kristin
    Roloff, Christoph
    de Souza, Luis G. Medeiros
    Bartz, Antje
    Seidel-Morgenstern, Andreas
    Thevenin, Dominique
    Janiga, Gabor
    CHEMICAL ENGINEERING SCIENCE, 2017, 165 : 1 - 13
  • [24] CFD-DEM simulation study on the bed dynamics of a binary mixture with super-quadric particles in a fluidized bed
    Wang, Ju
    Bao, Guirong
    POWDER TECHNOLOGY, 2025, 449
  • [25] CFD-DEM modeling of rod-like particles in a fluidized bed with complex geometry
    Ma, Huaqing
    Zhao, Yongzhi
    Cheng, Yi
    POWDER TECHNOLOGY, 2019, 344 : 673 - 683
  • [26] Simulation of a Wurster fluidized bed by CFD-DEM with a cohesive contact model
    Li, Heng
    Liu, Daoyin
    Ma, Jiliang
    Chen, Xiaoping
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 177 : 157 - 166
  • [27] CFD-DEM investigation of the fluidization of binary mixtures containing rod-like particles and spherical particles in a fluidized bed
    Ma, Huaqing
    Zhao, Yongzhi
    POWDER TECHNOLOGY, 2018, 336 : 533 - 545
  • [28] CFD-DEM Simulation of Slugging and Non-Slugging Fast Fluidization of Fine Particles in a Micro Riser
    Wu, Guorong
    Li, Yanggui
    PROCESSES, 2023, 11 (10)
  • [29] CFD-DEM simulation of gas-solid flow of wet particles in a fluidized bed with immersed tubes
    Zhao, Meng
    Liu, Daoyin
    Ma, Jiliang
    Chen, Xiaoping
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2020, 156
  • [30] Numerical simulation of flow behavior of particles in an inverse liquid-solid fluidized bed with a jet using CFD-DEM
    Wang, Shuyan
    Wang, Xinxue
    Wang, Xu
    Shao, Baoli
    Ma, Yimei
    Sun, Qiji
    Zhao, Jian
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 82 : 214 - 225