Strong convergence of a self-adaptive inertial Tseng's extragradient method for pseudomonotone variational inequalities and fixed point problems

被引:48
作者
Uzor, Victor Amarachi [1 ]
Alakoya, Timilehin Opeyemi [1 ]
Mewomo, Oluwatosin Temitope [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
基金
新加坡国家研究基金会;
关键词
Tseng's extragradient method; pseudomonotone; demicontractive; variational inequalities; fixed point; strong convergence; adaptive step size; inertial technique; NONEXPANSIVE-MAPPINGS; APPROXIMATION METHODS; STEP-SIZE; EQUILIBRIUM; OPTIMIZATION; ALGORITHM; OPERATORS; SYSTEMS; THEOREM; FAMILY;
D O I
10.1515/math-2022-0030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the problem of finding a common solution of the pseudomonotone variational inequality problem and fixed point problem for demicontractive mappings. We introduce a new inertial iterative scheme that combines Tseng's extragradient method with the viscosity method together with the adaptive step size technique for finding a common solution of the investigated problem. We prove a strong convergence result for our proposed algorithm under mild conditions and without prior knowledge of the Lipschitz constant of the pseudomonotone operator in Hilbert spaces. Finally, we present some numerical experiments to show the efficiency of our method in comparison with some of the existing methods in the literature.
引用
收藏
页码:234 / 257
页数:24
相关论文
共 57 条
[1]   ON SYSTEM OF SPLIT GENERALISED MIXED EQUILIBRIUM AND FIXED POINT PROBLEMS FOR MULTIVALUED MAPPINGS WITH NO PRIOR KNOWLEDGE OF OPERATOR NORM [J].
Alakoya, T. O. ;
Taiwo, A. ;
Mewomo, O. T. .
FIXED POINT THEORY, 2022, 23 (01) :45-48
[2]   Viscosity S-iteration method with inertial technique and self-adaptive step size for split variational inclusion, equilibrium and fixed point problems [J].
Alakoya, T. O. ;
Mewomo, O. T. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (01)
[3]   Strong convergence theorems for finite families of pseudomonotone equilibrium and fixed point problems in Banach spaces [J].
Alakoya, T. O. ;
Jolaoso, L. O. ;
Mewomo, O. T. .
AFRIKA MATEMATIKA, 2021, 32 (5-6) :897-923
[4]  
Alakoya T.O., 2021, Ann. Univ. Ferrara Sez. VII Sci. Mat, V67, P1, DOI [10.1007/s11565-020-00354-2, DOI 10.1007/S11565-020-00354-2]
[5]  
Alakoya T. O., 2021, J NONLINEAR CONVEX A
[6]   AN INERTIAL ALGORITHM WITH A SELF-ADAPTIVE STEP SIZE FOR A SPLIT EQUILIBRIUM PROBLEM AND A FIXED POINT PROBLEM OF AN INFINITE FAMILY OF STRICT PSEUDO-CONTRACTIONS [J].
Alakoya, Timilehin Opeyemi ;
Owolabi, Abd-Semii Oluwatosin-Enitan ;
Mewomo, Oluwatosin Temitope .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (05) :803-829
[7]  
Antipin AS., 1976, Ekonomika i Matematicheskie Metody, V12, P1164
[8]   Strong convergence theorems for inertial Tseng's extragradient method for solving variational inequality problems and fixed point problems [J].
Cai, Gang ;
Dong, Qiao-Li ;
Peng, Yu .
OPTIMIZATION LETTERS, 2021, 15 (04) :1457-1474
[9]   A New Double-Projection Method for Solving Variational Inequalities in Banach Spaces [J].
Cai, Gang ;
Gibali, Aviv ;
Iyiola, Olaniyi S. ;
Shehu, Yekini .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (01) :219-239
[10]   Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints [J].
Ceng, L. C. ;
Petrusel, A. ;
Qin, X. ;
Yao, J. C. .
OPTIMIZATION, 2021, 70 (5-6) :1337-1358