A fractional calculus of variations for multiple integrals with application to vibrating string

被引:111
作者
Almeida, Ricardo [1 ]
Malinowska, Agnieszka B. [1 ,2 ]
Torres, Delfim F. M. [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
[2] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
关键词
calculus; Green's function methods; integral equations; NONDIFFERENTIABLE FUNCTIONS; LAGRANGIAN MECHANICS; BROWNIAN-MOTION; DERIVATIVES; HAMILTON; FORMALISM; SYSTEMS; THEOREM; SERIES; ORDER;
D O I
10.1063/1.3319559
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a fractional theory of the calculus of variations for multiple integrals. Our approach uses the recent notions of Riemann-Liouville fractional derivatives and integrals in the sense of Jumarie. The main results provide fractional versions of the theorems of Green and Gauss, fractional Euler-Lagrange equations, and fractional natural boundary conditions. As an application we discuss the fractional equation of motion of a vibrating string.
引用
收藏
页数:12
相关论文
共 43 条
[1]   Fractional variational calculus and the transversality conditions [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (33) :10375-10384
[2]  
ALMEIDA R, FRACTIONAL VAR UNPUB
[3]   Calculus of variations with fractional derivatives and fractional integrals [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (12) :1816-1820
[4]   Holderian variational problems subject to integral constraints [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) :674-681
[5]  
[Anonymous], 2006, THEORY APPL FRACTION
[6]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[7]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[8]   Variational problems with fractional derivatives: Euler-Lagrange equations [J].
Atanackovic, T. M. ;
Konjik, S. ;
Pilipovic, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (09)
[9]   Variational problems with fractional derivatives: Invariance conditions and Nother's theorem [J].
Atanackovic, Teodor M. ;
Konjik, Sanja ;
Pilipovic, Stevan ;
Simic, Srboljub .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1504-1517
[10]   New applications of fractional variational principles [J].
Baleanu, Dumitru .
REPORTS ON MATHEMATICAL PHYSICS, 2008, 61 (02) :199-206