Graphene-based materials in electrochemistry

被引:1229
作者
Chen, Da [1 ,2 ]
Tang, Longhua [1 ]
Li, Jinghong [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China
[2] China Jiliang Univ, Coll Mat Sci & Engn, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLUTION-PROCESSABLE GRAPHENE; CHARGED-IMPURITY SCATTERING; EXFOLIATED GRAPHITE OXIDE; LIQUID-PHASE EXFOLIATION; FIELD-EFFECT TRANSISTORS; FUNCTIONALIZED GRAPHENE; QUANTUM CAPACITANCE; SINGLE-LAYER; AQUEOUS DISPERSIONS; EPITAXIAL GRAPHENE;
D O I
10.1039/b923596e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene, as the fundamental 2D carbon structure with exceptionally high crystal and electronic quality, has emerged as a rapidly rising star in the field of material science. Its sudden discovery in 2004 led to an explosion of interest in the study of graphene with respect to its unique physical, chemical, and mechanical properties, opening up a new research area for materials science and condensed-matter physics, and aiming for wide-ranging and diversified technological applications. In this critical review, we will describe recent advances in the development of graphene-based materials from the standpoint of electrochemistry. To begin with, electron transfer properties of graphene will be discussed, involving its unusual electronic structure, extraordinary electronic properties and fascinating electron transport. The next major section deals with the exciting progress related to graphene-based materials in electrochemistry since 2004, including electrochemical sensing, electrochemiluminescence, electrocatalysis, electrochemical energy conversion and FET devices. Finally, prospects and further developments in this exciting field of graphene-based materials are also suggested (224 references).
引用
收藏
页码:3157 / 3180
页数:24
相关论文
共 225 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[3]   Low-energy theory of disordered graphene [J].
Altland, Alexander .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[4]   Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications [J].
Alwarappan, Subbiah ;
Erdem, Arzum ;
Liu, Chang ;
Li, Chen-Zhong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (20) :8853-8857
[5]   Solution-Gated Epitaxial Graphene as pH Sensor [J].
Ang, Priscilla Kailian ;
Chen, Wei ;
Wee, Andrew Thye Shen ;
Loh, Kian Ping .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (44) :14392-+
[6]   Enhancement of CO detection in Al doped graphene [J].
Ao, Z. M. ;
Yang, J. ;
Li, S. ;
Jiang, Q. .
CHEMICAL PHYSICS LETTERS, 2008, 461 (4-6) :276-279
[7]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[8]   Non-covalent functionalization of graphene sheets by sulfonated polyaniline [J].
Bai, Hua ;
Xu, Yuxi ;
Zhao, Lu ;
Li, Chun ;
Shi, Gaoquan .
CHEMICAL COMMUNICATIONS, 2009, (13) :1667-1669
[9]   Rational Fabrication of Graphene Nanoribbons Using a Nanowire Etch Mask [J].
Bai, Jingwei ;
Duan, Xiangfeng ;
Huang, Yu .
NANO LETTERS, 2009, 9 (05) :2083-2087
[10]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907