Long-Lived, Transferred Crystalline Silicon Carbide Nanomembranes for Implantable Flexible Electronics

被引:101
作者
Hoang-Phuon Phan [1 ,2 ]
Zhong, Yishan [4 ]
Tuan-Khoa Nguyen [1 ]
Park, Yoonseok [2 ]
Toan Dinh [1 ]
Song, Enming [4 ]
Vadivelu, Raja Kumar [1 ]
Masud, Mostafa Kamal [5 ,6 ]
Li, Jinghua [4 ,7 ,10 ]
Shiddiky, Muhammad J. A. [1 ,8 ]
Dao, Dzung [1 ,3 ]
Yamauchi, Yusuke [5 ,6 ,7 ,9 ]
Rogers, John A. [11 ,12 ]
Nam-Trung Nguyen [1 ]
机构
[1] Griffith Univ, Queensland Micro & Nanotechnol Ctr, Brisbane, Qld, Australia
[2] Northwestern Univ, Ctr Biointegrated Elect, Evanston, IL 60208 USA
[3] Griffith Univ, Sch Engn & Built Environm, Gold Coast, Qld 4215, Australia
[4] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[5] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[6] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[7] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[8] Griffith Univ, Sch Environm & Sci, Brisbane, Qld 4111, Australia
[9] NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[10] Kyung Hee Univ, Dept Plant & Environm New Resources, 1732 Deogyeong Daero, Yongin 446701, Gyeonggi Do, South Korea
[11] Northwestern Univ, Dept Mat Sci & Engn Biomed Engn Chem Mech Engn El, Simpson Querrey Inst Nano Biotechnol, Ctr Biointegrated Elect,McCormick Sch Engn, Evanston, IL 60208 USA
[12] Northwestern Univ, Feinberg Sch Med, Evanston, IL 60208 USA
基金
澳大利亚研究理事会;
关键词
implantable electronics; flexible electronics; silicon carbide; long-lived operation; neuro-electrophysiology; multifunctional sensing; DISSOLUTION CHEMISTRY; BIOFLUID BARRIERS; TRANSIENT; BIOCOMPATIBILITY; NANOCRYSTALLINE; NANOSCALE; ULTRATHIN; LAYERS;
D O I
10.1021/acsnano.9b05168
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Implantable electronics are of great interest owing to their capability for real-time and continuous recording of cellular-electrical activity. Nevertheless, as such systems involve direct interfaces with surrounding biofluidic environments, maintaining their long-term sustainable operation, without leakage currents or corrosion, is a daunting challenge. Herein, we present a thin, flexible semiconducting material system that offers attractive attributes in this context. The material consists of crystalline cubic silicon carbide nanomembranes grown on silicon wafers, released and then physically transferred to a final device substrate (e.g., polyimide). The experimental results demonstrate that SiC nanomembranes with thicknesses of 230 nm do not experience the hydrolysis process (i.e., the etching rate is 0 nm/day at 96 degrees C in phosphate-buffered saline (PBS)). There is no observable water permeability for at least 60 days in PBS at 96 degrees C and non-Na+ ion diffusion detected at a thickness of 50 nm after being soaked in 1 x PBS for 12 days. These properties enable Faradaic interfaces between active electronics and biological tissues, as well as multimodal sensing of temperature, strain, and other properties without the need for additional encapsulating layers. These findings create important opportunities for use of flexible, wide band gap materials as essential components of long-lived neurological and cardiac electrophysiological device interfaces.
引用
收藏
页码:11572 / 11581
页数:10
相关论文
共 49 条
[1]   Demonstration of a Robust All-Silicon-Carbide Intracortical Neural Interface [J].
Bernardin, Evans K. ;
Frewin, Christopher L. ;
Everly, Richard ;
Ul Hassan, Jawad ;
Saddow, Stephen E. .
MICROMACHINES, 2018, 9 (08)
[2]   Fabrication of a Monolithic Implantable Neural Interface from Cubic Silicon Carbide [J].
Beygi, Mohammad ;
Bentley, John T. ;
Frewin, Christopher L. ;
Kuliasha, Cary A. ;
Takshi, Arash ;
Bernardin, Evans K. ;
La Via, Francesco ;
Saddow, Stephen E. .
MICROMACHINES, 2019, 10 (07)
[3]   Biodegradable Electronic Systems in 3D, Heterogeneously Integrated Formats [J].
Chang, Jan-Kai ;
Chang, Hui-Ping ;
Guo, Qinglei ;
Koo, Jahyun ;
Wu, Chih-I ;
Rogers, John A. .
ADVANCED MATERIALS, 2018, 30 (11)
[4]   High performance SiC detectors for MeV ion beams generated by intense pulsed laser plasmas [J].
Cutroneo, M. ;
Musumeci, P. ;
Zimbone, M. ;
Torrisi, L. ;
La Via, F. ;
Margarone, D. ;
Velyhan, A. ;
Ullschmied, J. ;
Calcagno, L. .
JOURNAL OF MATERIALS RESEARCH, 2013, 28 (01) :87-93
[5]   Transient, Biocompatible Electronics and Energy Harvesters Based on ZnO [J].
Dagdeviren, Canan ;
Hwang, Suk-Won ;
Su, Yewang ;
Kim, Stanley ;
Cheng, Huanyu ;
Gur, Onur ;
Haney, Ryan ;
Omenetto, Fiorenzo G. ;
Huang, Yonggang ;
Rogers, John A. .
SMALL, 2013, 9 (20) :3398-3404
[6]  
Dai XC, 2016, NAT NANOTECHNOL, V11, P776, DOI [10.1038/NNANO.2016.96, 10.1038/nnano.2016.96]
[7]  
de Beeck M. O., 2013, 2013 EUR MICR PARCK, P1
[8]   Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording [J].
Deku, Felix ;
Cohen, Yarden ;
Joshi-Imre, Alexandra ;
Kanneganti, Aswini ;
Gardner, Timothy J. ;
Cogan, Stuart F. .
JOURNAL OF NEURAL ENGINEERING, 2018, 15 (01)
[9]   A silicon carbide array for electrocorticography and peripheral nerve recording [J].
Diaz-Botia, C. A. ;
Luna, L. E. ;
Neely, R. M. ;
Chamanzar, M. ;
Carraro, C. ;
Carmena, J. M. ;
Sabes, P. N. ;
Maboudian, R. ;
Maharbiz, M. M. .
JOURNAL OF NEURAL ENGINEERING, 2017, 14 (05)
[10]   Thermoresistive Effect for Advanced Thermal Sensors: Fundamentals, Design Considerations, and Applications [J].
Dinh, Toan ;
Phan, Hoang-Phuong ;
Qamar, Afzaal ;
Woodfield, Peter ;
Nguyen, Nam-Trung ;
Dao, Dzung Viet .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2017, 26 (05) :966-986