Low Fouling, Peptoid-Coated Polysulfone Hollow Fiber Membranes-the Effect of Grafting Density and Number of Side Chains

被引:4
作者
Mahmoudi, Neda [1 ]
Roberts, Jesse [1 ]
Harrison, Grant [1 ]
Alshammari, Nawaf [2 ]
Hestekin, Jamie [1 ]
Servoss, Shannon L. [1 ]
机构
[1] Univ Arkansas, Ralph E Martin Dept Chem Engn, 3202 Bell Engn Ctr, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Cell & Mol Biol Program, Fayetteville, AR 72701 USA
基金
美国国家科学基金会;
关键词
Biofouling; Peptoid; Polysulfone; Hollow fiber membrane; Biocompatibility; PROTEIN ADSORPTION; PLATELET-ADHESION; POLYPROPYLENE MEMBRANE; SURFACE MODIFICATION; IN-VITRO; LENGTH; ELECTROCOAGULATION; POLYMERS; RESIST; HEMOCOMPATIBILITY;
D O I
10.1007/s12010-019-03218-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The development of low fouling membranes to minimize protein adsorption has relevance in various biomedical applications. Here, electrically neutral peptoids containing 2-methoxyethyl glycine (NMEG) side chains were attached to polysulfone hollow fiber membranes via polydopamine. The number of side chains and grafting density were varied to determine the effect on coating properties and the ability to prevent fouling. NMEG peptoid coatings have high hydrophilicity compared to unmodified polysulfone membranes. The extent of biofouling was evaluated using bovine serum albumin, as well as platelet adhesion. The results suggest that both the number of side chains and grafting density play a role in the surface properties that drive biofouling. Protein adsorption decreased with increasing peptoid grafting density and is lowest above a critical grafting density specific to peptoid chain length. Our findings show that the optimization of grafting density and hydration of the surface are important factors for achieving the desired antifouling performance.
引用
收藏
页码:824 / 837
页数:14
相关论文
共 55 条
[1]   Scalable Chitosan-Graphene Oxide Membranes: The Effect of GO Size on Properties and Cross-Flow Filtration Performance [J].
Abolhassani, Mojtaba ;
Griggs, Chris S. ;
Gurtowski, Luke A. ;
Mattei-Sosa, Jose A. ;
Nevins, Michelle ;
Medina, Victor F. ;
Morgan, Timothy A. ;
Greenlee, Lauren F. .
ACS OMEGA, 2017, 2 (12) :8751-8759
[2]   Surface modification of PVDF membranes for treating produced waters by direct contact membrane distillation [J].
Anari, Zahra ;
Sengupta, Arijit ;
Sardari, Kamyar ;
Wickramasinghe, S. Ranil .
SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 224 :388-396
[3]   Biological responses to materials [J].
Anderson, JM .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2001, 31 :81-110
[4]   Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms [J].
Banerjee, Indrani ;
Pangule, Ravindra C. ;
Kane, Ravi S. .
ADVANCED MATERIALS, 2011, 23 (06) :690-718
[5]  
BELLASSAI N, 2018, J MAT CHEM B
[6]   A review of the biomaterials technologies for infection-resistant surfaces [J].
Campoccia, Davide ;
Montanaro, Lucio ;
Arciola, Carla Renata .
BIOMATERIALS, 2013, 34 (34) :8533-8554
[7]   Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition [J].
Cao, Lan ;
Chang, Mark ;
Lee, Chi-Ying ;
Castner, David G. ;
Sukavaneshvar, Sivaprasad ;
Ratner, Buddy D. ;
Horbett, Thomas A. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 81A (04) :827-837
[8]   Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines [J].
Chang, Y ;
Chen, SF ;
Zhang, Z ;
Jiang, SY .
LANGMUIR, 2006, 22 (05) :2222-2226
[9]   Surveying for surfaces that resist the adsorption of proteins [J].
Chapman, RG ;
Ostuni, E ;
Takayama, S ;
Holmlin, RE ;
Yan, L ;
Whitesides, GM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (34) :8303-8304
[10]   Bioinspired antifouling polymers [J].
Dalsin, Jeffrey L. ;
Messersmith, Phillip B. .
MATERIALS TODAY, 2005, 8 (09) :38-46